Outperformance and Tracking: Dynamic Asset Allocation for Active and Passive Portfolio Management

A. Al-Aradi, S. Jaimungal
{"title":"Outperformance and Tracking: Dynamic Asset Allocation for Active and Passive Portfolio Management","authors":"A. Al-Aradi, S. Jaimungal","doi":"10.1080/1350486X.2018.1507751","DOIUrl":null,"url":null,"abstract":"ABSTRACT Portfolio management problems are often divided into two types: active and passive, where the objective is to outperform and track a preselected benchmark, respectively. Here, we formulate and solve a dynamic asset allocation problem that combines these two objectives in a unified framework. We look to maximize the expected growth rate differential between the wealth of the investor’s portfolio and that of a performance benchmark while penalizing risk-weighted deviations from a given tracking portfolio. Using stochastic control techniques, we provide explicit closed-form expressions for the optimal allocation and we show how the optimal strategy can be related to the growth optimal portfolio. The admissible benchmarks encompass the class of functionally generated portfolios (FGPs), which include the market portfolio, as the only requirement is that they depend only on the prevailing asset values. Finally, some numerical experiments are presented to illustrate the risk–reward profile of the optimal allocation.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2018.1507751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 18

Abstract

ABSTRACT Portfolio management problems are often divided into two types: active and passive, where the objective is to outperform and track a preselected benchmark, respectively. Here, we formulate and solve a dynamic asset allocation problem that combines these two objectives in a unified framework. We look to maximize the expected growth rate differential between the wealth of the investor’s portfolio and that of a performance benchmark while penalizing risk-weighted deviations from a given tracking portfolio. Using stochastic control techniques, we provide explicit closed-form expressions for the optimal allocation and we show how the optimal strategy can be related to the growth optimal portfolio. The admissible benchmarks encompass the class of functionally generated portfolios (FGPs), which include the market portfolio, as the only requirement is that they depend only on the prevailing asset values. Finally, some numerical experiments are presented to illustrate the risk–reward profile of the optimal allocation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优异表现与跟踪:主动与被动投资组合管理的动态资产配置
投资组合管理问题通常分为两种类型:主动和被动,其目标分别是超越和跟踪预先选择的基准。在这里,我们制定并解决了一个将这两个目标结合在一个统一框架中的动态资产配置问题。我们希望最大化投资者投资组合财富与业绩基准之间的预期增长率差异,同时惩罚与给定跟踪投资组合的风险加权偏差。利用随机控制技术,我们提供了最优配置的显式封闭形式表达式,并展示了最优策略如何与增长最优投资组合相关联。可接受的基准包括功能生成的投资组合(fgp)类别,其中包括市场投资组合,因为唯一的要求是它们仅依赖于主流资产价值。最后,给出了一些数值实验来说明最优配置的风险-回报分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
期刊最新文献
Price Impact Without Averaging On the Skew and Curvature of the Implied and Local Volatilities Arbitrage-Free Neural-SDE Market Models Policy Gradient Learning Methods for Stochastic Control with Exit Time and Applications to Share Repurchase Pricing Multi-Period Mean Expected-Shortfall Strategies: ‘Cut Your Losses and Ride Your Gains’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1