A novel methodology for a time-delayed controller to prevent nonlinear system oscillations

IF 2.8 4区 工程技术 Q1 ACOUSTICS Journal of Low Frequency Noise Vibration and Active Control Pub Date : 2023-08-15 DOI:10.1177/14613484231195276
G. Moatimid, T. Amer, YY Ellabban
{"title":"A novel methodology for a time-delayed controller to prevent nonlinear system oscillations","authors":"G. Moatimid, T. Amer, YY Ellabban","doi":"10.1177/14613484231195276","DOIUrl":null,"url":null,"abstract":"The paper investigates the nonlinear transversal vibrations of a cantilever beam structure in the primary resonance case. A time-delayed position-velocity control is suggested to reduce the nonlinear vibrations of the structure under consideration. A non-perturbative method (NPM) is used to get an equivalent analogous linear differential equation (DE) to the original nonlinear one. For the benefit of the readers, a comprehensive description of the NPM method is provided. The theoretical findings are validated through a numerical comparison carried out by employed the Mathematica Software. Both the numerical solutions and the theoretical outcomes showed excellent agreement. As well-known, all classic perturbation techniques use Taylor expansion, when the restoring forces are present, to expand these forces and therefore lessen the difficulty of the given problem. Under the NPM, this weakness is no longer present. Furthermore, one may examine the stability examination of the issue with the NPM something that was not possible with prior traditional techniques. The controlled linear equivalent model is examined using the multiple-scales homotopy method. The amplitude-phase modulation equations which control the dynamics of the structure at the various resonance circumstances are established. The loop-delay stability diagrams are analyzed. It is looked at how the different controller parameters impact the oscillation behaviors of the system. The obtained theoretical outcomes showed that the loop delay has an important impact on the effectiveness of the control. Therefore, the ideal loop-delay values are given and used to develop the enactment of the organized control. The completed analytical results are also numerically validated, to reveal their good correlation with the achieved theoretical new results.","PeriodicalId":56067,"journal":{"name":"Journal of Low Frequency Noise Vibration and Active Control","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Frequency Noise Vibration and Active Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14613484231195276","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

Abstract

The paper investigates the nonlinear transversal vibrations of a cantilever beam structure in the primary resonance case. A time-delayed position-velocity control is suggested to reduce the nonlinear vibrations of the structure under consideration. A non-perturbative method (NPM) is used to get an equivalent analogous linear differential equation (DE) to the original nonlinear one. For the benefit of the readers, a comprehensive description of the NPM method is provided. The theoretical findings are validated through a numerical comparison carried out by employed the Mathematica Software. Both the numerical solutions and the theoretical outcomes showed excellent agreement. As well-known, all classic perturbation techniques use Taylor expansion, when the restoring forces are present, to expand these forces and therefore lessen the difficulty of the given problem. Under the NPM, this weakness is no longer present. Furthermore, one may examine the stability examination of the issue with the NPM something that was not possible with prior traditional techniques. The controlled linear equivalent model is examined using the multiple-scales homotopy method. The amplitude-phase modulation equations which control the dynamics of the structure at the various resonance circumstances are established. The loop-delay stability diagrams are analyzed. It is looked at how the different controller parameters impact the oscillation behaviors of the system. The obtained theoretical outcomes showed that the loop delay has an important impact on the effectiveness of the control. Therefore, the ideal loop-delay values are given and used to develop the enactment of the organized control. The completed analytical results are also numerically validated, to reveal their good correlation with the achieved theoretical new results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种防止系统非线性振荡的延时控制器新方法
本文研究了悬臂梁结构在主共振情况下的非线性横向振动。为了减小结构的非线性振动,提出了一种延时位置-速度控制方法。采用非摄动方法(NPM)得到与原非线性方程等价的近似线性微分方程。为了方便读者,本文提供了对NPM方法的全面描述。利用Mathematica软件进行数值比较,验证了理论结果。数值解与理论结果吻合良好。众所周知,当恢复力存在时,所有经典的摄动技术都使用泰勒展开来扩展这些力,从而降低给定问题的难度。在国家防范机制下,这一弱点不再存在。此外,人们可以用NPM检查问题的稳定性检查,这是以前的传统技术无法做到的。利用多尺度同伦方法对控制线性等效模型进行了检验。建立了在各种谐振情况下控制结构动力学的幅相位调制方程。分析了环延迟稳定性图。研究了不同的控制器参数对系统振荡特性的影响。得到的理论结果表明,环路延迟对控制的有效性有重要影响。因此,给出了理想的回路延迟值,并用于制定有组织控制。完成的分析结果也进行了数值验证,表明它们与所获得的理论新结果具有良好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
4.30%
发文量
98
审稿时长
15 weeks
期刊介绍: Journal of Low Frequency Noise, Vibration & Active Control is a peer-reviewed, open access journal, bringing together material which otherwise would be scattered. The journal is the cornerstone of the creation of a unified corpus of knowledge on the subject.
期刊最新文献
Dynamical analysis of a fractional-order nonlinear two-degree-of-freedom vehicle system by incremental harmonic balance method Aeroelastic investigation on an all-movable horizontal tail with free-play nonlinearity Dynamic characteristics of vibration localization of mistuned bladed disk due to shroud and blade damages Acoustic cloaking design based on penetration manipulation with combination acoustic metamaterials Study on the interaction between shaking table and eccentric load
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1