Simplified Neural Unsupervised Domain Adaptation

Timothy Miller
{"title":"Simplified Neural Unsupervised Domain Adaptation","authors":"Timothy Miller","doi":"10.18653/v1/N19-1039","DOIUrl":null,"url":null,"abstract":"Unsupervised domain adaptation (UDA) is the task of training a statistical model on labeled data from a source domain to achieve better performance on data from a target domain, with access to only unlabeled data in the target domain. Existing state-of-the-art UDA approaches use neural networks to learn representations that are trained to predict the values of subset of important features called “pivot features” on combined data from the source and target domains. In this work, we show that it is possible to improve on existing neural domain adaptation algorithms by 1) jointly training the representation learner with the task learner; and 2) removing the need for heuristically-selected “pivot features.” Our results show competitive performance with a simpler model.","PeriodicalId":74542,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","volume":"1 1","pages":"414-419"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/N19-1039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Unsupervised domain adaptation (UDA) is the task of training a statistical model on labeled data from a source domain to achieve better performance on data from a target domain, with access to only unlabeled data in the target domain. Existing state-of-the-art UDA approaches use neural networks to learn representations that are trained to predict the values of subset of important features called “pivot features” on combined data from the source and target domains. In this work, we show that it is possible to improve on existing neural domain adaptation algorithms by 1) jointly training the representation learner with the task learner; and 2) removing the need for heuristically-selected “pivot features.” Our results show competitive performance with a simpler model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简化神经无监督域自适应
无监督域自适应(Unsupervised domain adaptation, UDA)是在源域的标记数据上训练统计模型,以在目标域的数据上获得更好的性能,只访问目标域的未标记数据。现有的最先进的UDA方法使用神经网络来学习表征,这些表征被训练来预测来自源和目标域的组合数据上称为“枢轴特征”的重要特征子集的值。在这项工作中,我们表明可以通过1)联合训练表征学习器和任务学习器来改进现有的神经域自适应算法;2)消除了对启发式选择的“枢纽特征”的需求。我们的结果显示了一个更简单的模型具有竞争力的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ODD: A Benchmark Dataset for the Natural Language Processing Based Opioid Related Aberrant Behavior Detection. Towards Reducing Diagnostic Errors with Interpretable Risk Prediction. ScAN: Suicide Attempt and Ideation Events Dataset. ScAN: Suicide Attempt and Ideation Events Dataset Translational NLP: A New Paradigm and General Principles for Natural Language Processing Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1