{"title":"Afterpulse background suppression in time-correlated single photon counting lifetime experiments using optimized gate filter","authors":"M. Gerber, R. Kleiman","doi":"10.1109/PVSC.2014.6925296","DOIUrl":null,"url":null,"abstract":"Using a monostable multivibrator, the signal-dependent afterpulsing background from a single photon avalanche diode was suppressed. This digital filter gate was characterized and optimized using photoluminescence decay lifetime measurements to show a reduction in systematic error that is 25% of the measured lifetime and ~500X improvement in acquisition time when compared with the time taken to obtain a comparably reliable result by reduction of the repetition rate to suppress afterpulsing. At 10 MHz, there is an increase in the linear dynamic range from ~2τ to ~6τ, where the lifetime, t, was measured to be (5.0±0.1)ns. Lifetime measurements were performed with a pulsed 510 nm diode laser, a 500 nm GaAs layer (sandwiched between InGaP capping layers), a silicon single-photon avalanche photodiode and time-correlated single photon counting electronics.","PeriodicalId":6649,"journal":{"name":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","volume":"38 1","pages":"1899-1902"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2014.6925296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Using a monostable multivibrator, the signal-dependent afterpulsing background from a single photon avalanche diode was suppressed. This digital filter gate was characterized and optimized using photoluminescence decay lifetime measurements to show a reduction in systematic error that is 25% of the measured lifetime and ~500X improvement in acquisition time when compared with the time taken to obtain a comparably reliable result by reduction of the repetition rate to suppress afterpulsing. At 10 MHz, there is an increase in the linear dynamic range from ~2τ to ~6τ, where the lifetime, t, was measured to be (5.0±0.1)ns. Lifetime measurements were performed with a pulsed 510 nm diode laser, a 500 nm GaAs layer (sandwiched between InGaP capping layers), a silicon single-photon avalanche photodiode and time-correlated single photon counting electronics.