Research on Fast Face Retrieval Optimization Algorithm Based on Fuzzy Clustering

Sci. Program. Pub Date : 2022-01-07 DOI:10.1155/2022/6588777
Xiangmin Dong, Bin Huang, Yuncai Zhou
{"title":"Research on Fast Face Retrieval Optimization Algorithm Based on Fuzzy Clustering","authors":"Xiangmin Dong, Bin Huang, Yuncai Zhou","doi":"10.1155/2022/6588777","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of long retrieval time for massive face image databases under a given threshold, a fast retrieval algorithm for massive face images based on fuzzy clustering is proposed. The algorithm builds a deep convolutional neural network model. The model can be used to extract features from face photos to obtain a high-dimensional vector to represent the high-level semantic features of face photos. On this basis, the fuzzy clustering algorithm is used to perform fuzzy clustering on the feature vectors of the face database to construct a retrieval pedigree map. When the threshold is passed in for database retrieval of the target face photos, the pedigree map can be quickly retrieved. Experiments on the LFW face dataset and self-collected face dataset show that the model is better than the commonly used K-means model in face recognition accuracy, clustering effect, and retrieval speed and has certain commercial value.","PeriodicalId":21628,"journal":{"name":"Sci. Program.","volume":"43 1","pages":"6588777:1-6588777:7"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sci. Program.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/6588777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Aiming at the problem of long retrieval time for massive face image databases under a given threshold, a fast retrieval algorithm for massive face images based on fuzzy clustering is proposed. The algorithm builds a deep convolutional neural network model. The model can be used to extract features from face photos to obtain a high-dimensional vector to represent the high-level semantic features of face photos. On this basis, the fuzzy clustering algorithm is used to perform fuzzy clustering on the feature vectors of the face database to construct a retrieval pedigree map. When the threshold is passed in for database retrieval of the target face photos, the pedigree map can be quickly retrieved. Experiments on the LFW face dataset and self-collected face dataset show that the model is better than the commonly used K-means model in face recognition accuracy, clustering effect, and retrieval speed and has certain commercial value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊聚类的快速人脸检索优化算法研究
针对给定阈值下海量人脸图像数据库检索时间过长的问题,提出了一种基于模糊聚类的海量人脸图像快速检索算法。该算法建立了一个深度卷积神经网络模型。该模型可以从人脸照片中提取特征,得到一个高维向量来表示人脸照片的高级语义特征。在此基础上,采用模糊聚类算法对人脸数据库的特征向量进行模糊聚类,构建检索谱系图。当传入目标人脸照片数据库检索阈值时,可以快速检索到目标人脸的谱系图。在LFW人脸数据集和自采集人脸数据集上的实验表明,该模型在人脸识别精度、聚类效果和检索速度上都优于常用的K-means模型,具有一定的商业价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Liquid Democracy Enabled Blockchain-Based Electronic Voting System Bike-Sharing Fleet Allocation Optimization Based on Demand Gap and Cycle Rebalancing Strategies Research on the Intelligent Assignment Model of Urban Traffic Planning Based on Optimal Path Optimization Algorithm Online Teaching Wireless Video Stream Resource Dynamic Allocation Method considering Node Ability The Path of Film and Television Animation Creation Using Virtual Reality Technology under the Artificial Intelligence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1