Takao Watanabe, T. Otsuka, Shotaro Hagisawa, Yuta Koshika, S. Adachi, T. Usui, Nae Sasaki, S. Sasaki, S. Yamaguchi, Y. Uezono, Y. Nakanishi, M. Yoshizawa, S. Kimura
{"title":"Electronic phase diagram of Fe1+yTe1−xSex revealed by magnetotransport measurements","authors":"Takao Watanabe, T. Otsuka, Shotaro Hagisawa, Yuta Koshika, S. Adachi, T. Usui, Nae Sasaki, S. Sasaki, S. Yamaguchi, Y. Uezono, Y. Nakanishi, M. Yoshizawa, S. Kimura","doi":"10.1142/S0217984920400515","DOIUrl":null,"url":null,"abstract":"Among the Fe-based superconductors, Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ is unique in that its crystal structure is the simplest and the electron correlation level is the strongest, and thus it is important to investigate the doping($x$)-temperature ($T$) phase diagram of this system. However, inevitably incorporated excess Fe currently prevents the establishment of the true phase diagram. We overcome the aforementioned significant problem via developing a new annealing method termed as \"Te-annealing\" wherein single crystals are annealed under Te vapor. Specifically, we conducted various magnetotransport measurements on Te-annealed superconducting Fe$_{1+y}$Te$_{1-x}$Se$_{x}$. We observed that crossover from the incoherent to the coherent electronic state and opening of the pseudogap occurs at high temperatures ($\\approx$ 150 K for $x$ = 0.2). This is accompanied by a more substantial pseudogap and the emergence of a phase with a multi-band nature at lower temperatures (below $\\approx$ 50 K for $x$ = 0.2) before superconductivity sets in. Based on the results, the third type electronic phase diagram in Fe-based high-$T_c$ superconductors is revealed.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217984920400515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Among the Fe-based superconductors, Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ is unique in that its crystal structure is the simplest and the electron correlation level is the strongest, and thus it is important to investigate the doping($x$)-temperature ($T$) phase diagram of this system. However, inevitably incorporated excess Fe currently prevents the establishment of the true phase diagram. We overcome the aforementioned significant problem via developing a new annealing method termed as "Te-annealing" wherein single crystals are annealed under Te vapor. Specifically, we conducted various magnetotransport measurements on Te-annealed superconducting Fe$_{1+y}$Te$_{1-x}$Se$_{x}$. We observed that crossover from the incoherent to the coherent electronic state and opening of the pseudogap occurs at high temperatures ($\approx$ 150 K for $x$ = 0.2). This is accompanied by a more substantial pseudogap and the emergence of a phase with a multi-band nature at lower temperatures (below $\approx$ 50 K for $x$ = 0.2) before superconductivity sets in. Based on the results, the third type electronic phase diagram in Fe-based high-$T_c$ superconductors is revealed.