Pub Date : 2021-04-08DOI: 10.1016/j.physc.2021.1353916
J. Hirsch, F. Marsiglio
{"title":"Flux trapping in superconducting hydrides under high pressure.","authors":"J. Hirsch, F. Marsiglio","doi":"10.1016/j.physc.2021.1353916","DOIUrl":"https://doi.org/10.1016/j.physc.2021.1353916","url":null,"abstract":"","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79118331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-16DOI: 10.21203/RS.3.RS-404809/V1
Shiyan Li, Chen Zhao, Linshu Wang, W. Xia, Q. Yin, J. Ni, Yeyu Huang, Chengpeng Tu, Zicheng Tao, Z. Tu, C. Gong, H. Lei, Yanfeng Guo, Xiaofan Yang
Recently superconductivity was discovered in the Kagome metal $A$V$_3$Sb$_5$ ($A$ = K, Rb, and Cs), which has an ideal Kagome lattice of vanadium. These V-based superconductors also host charge density wave and topological nontrivial band structure. Here we report the ultralow-temperature thermal conductivity and high pressure resistance measurements on CsV$_3$Sb$_5$ with $T_c approx$ 2.5 K, the highest among $A$V$_3$Sb$_5$. A finite residual linear term of thermal conductivity at zero magnetic field and its rapid increase in fields suggest nodal superconductivity. By applying pressure, the $T_c$ of CsV$_3$Sb$_5$ increases first, then decreases, showing a clear superconducting dome. Both nodal superconductivity and superconducting dome point to unconventional superconductivity in this V-based superconductor, which could be chiral $d$-wave or odd-parity pairing superconducting state.
{"title":"Nodal superconductivity and superconducting domes in the topological Kagome metal CsV3Sb5","authors":"Shiyan Li, Chen Zhao, Linshu Wang, W. Xia, Q. Yin, J. Ni, Yeyu Huang, Chengpeng Tu, Zicheng Tao, Z. Tu, C. Gong, H. Lei, Yanfeng Guo, Xiaofan Yang","doi":"10.21203/RS.3.RS-404809/V1","DOIUrl":"https://doi.org/10.21203/RS.3.RS-404809/V1","url":null,"abstract":"Recently superconductivity was discovered in the Kagome metal $A$V$_3$Sb$_5$ ($A$ = K, Rb, and Cs), which has an ideal Kagome lattice of vanadium. These V-based superconductors also host charge density wave and topological nontrivial band structure. Here we report the ultralow-temperature thermal conductivity and high pressure resistance measurements on CsV$_3$Sb$_5$ with $T_c approx$ 2.5 K, the highest among $A$V$_3$Sb$_5$. A finite residual linear term of thermal conductivity at zero magnetic field and its rapid increase in fields suggest nodal superconductivity. By applying pressure, the $T_c$ of CsV$_3$Sb$_5$ increases first, then decreases, showing a clear superconducting dome. Both nodal superconductivity and superconducting dome point to unconventional superconductivity in this V-based superconductor, which could be chiral $d$-wave or odd-parity pairing superconducting state.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79407152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-10DOI: 10.21203/RS.3.RS-184874/V1
A. Veyrat, V. Labracherie, R. Acharya, D. Bashlakov, F. Caglieris, J. I. Facio, G. Shipunov, L. Gráf, Johannes Schoop, Y. Naidyuk, R. Giraud, J. Brink, B. Buechner, C. Hess, S. Aswartham, J. Dufouleur
Symmetry breaking in topological matter became, in the last decade, a key concept in condensed matter physics to unveil novel electronic states. In this work, we reveal that broken inversion symmetry and strong spin-orbit coupling in trigonal PtBi2 lead to a Weyl semimetal band structure, with unusually robust two-dimensional superconductivity in thin fims. Transport measurements show that high-quality PtBi2 crystals are three-dimensional superconductors (Tc≈600 mK) with an isotropic critical field (Bc≈50 mT). Remarkably, we evidence in a rather thick flake (60 nm), exfoliated from a macroscopic crystal, the two-dimensional nature of the superconducting state, with a critical temperature Tc≈370 mK and highly-anisotropic critical fields. Our results reveal a Berezinskii-Kosterlitz-Thouless transition with TBKT≈310 mK and with a broadening of Tc due to inhomogenities in the sample. Due to the very long superconducting coherence length ξ in PtBi2, the vortex-antivortex pairing mechanism can be studied in unusually-thick samples (at least five times thicker than for any other two-dimensional superconductor), making PtBi2 an ideal platform to study low dimensional superconductivity in a topological semimetal.
{"title":"Bereziskii-Kosterlitz-Thouless transition in the Weyl system PtBi2","authors":"A. Veyrat, V. Labracherie, R. Acharya, D. Bashlakov, F. Caglieris, J. I. Facio, G. Shipunov, L. Gráf, Johannes Schoop, Y. Naidyuk, R. Giraud, J. Brink, B. Buechner, C. Hess, S. Aswartham, J. Dufouleur","doi":"10.21203/RS.3.RS-184874/V1","DOIUrl":"https://doi.org/10.21203/RS.3.RS-184874/V1","url":null,"abstract":"\u0000 Symmetry breaking in topological matter became, in the last decade, a key concept in condensed matter physics to unveil novel electronic states. In this work, we reveal that broken inversion symmetry and strong spin-orbit coupling in trigonal PtBi2 lead to a Weyl semimetal band structure, with unusually robust two-dimensional superconductivity in thin fims. Transport measurements show that high-quality PtBi2 crystals are three-dimensional superconductors (Tc≈600 mK) with an isotropic critical field (Bc≈50 mT). Remarkably, we evidence in a rather thick flake (60 nm), exfoliated from a macroscopic crystal, the two-dimensional nature of the superconducting state, with a critical temperature Tc≈370 mK and highly-anisotropic critical fields. Our results reveal a Berezinskii-Kosterlitz-Thouless transition with TBKT≈310 mK and with a broadening of Tc due to inhomogenities in the sample. Due to the very long superconducting coherence length ξ in PtBi2, the vortex-antivortex pairing mechanism can be studied in unusually-thick samples (at least five times thicker than for any other two-dimensional superconductor), making PtBi2 an ideal platform to study low dimensional superconductivity in a topological semimetal.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"102 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79419507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-19DOI: 10.1103/PhysRevB.103.184516
Dakyeong Kim, S. Kobayashi, Y. Asano
The angular momentum of an electron is characterized well by pseudospin with $J=3/2$ in the presence of strong spin-orbit interactions. We study theoretically the Josephson effect of superconductors in which such two $J=3/2$ electrons form a Cooper pair. Within even-parity symmetry class, pseudospin-quintet pairing states with $J=2$ can exist as well as pseudospin-singlet state with $J=0$. We focus especially on the Josephson selection rule among these even-parity superconductors. We find that the selection rule between quintet states is severer than that between spin-triplet states formed by two $S=1/2$ electrons. The effects of a pseudospin-active interface on the selection rule are discussed as well as those of odd-frequency Cooper pairs generated by pseudospin dependent band structures.
{"title":"Josephson effect of superconductors with \u0000J=32\u0000 electrons","authors":"Dakyeong Kim, S. Kobayashi, Y. Asano","doi":"10.1103/PhysRevB.103.184516","DOIUrl":"https://doi.org/10.1103/PhysRevB.103.184516","url":null,"abstract":"The angular momentum of an electron is characterized well by pseudospin with $J=3/2$ in the presence of strong spin-orbit interactions. We study theoretically the Josephson effect of superconductors in which such two $J=3/2$ electrons form a Cooper pair. Within even-parity symmetry class, pseudospin-quintet pairing states with $J=2$ can exist as well as pseudospin-singlet state with $J=0$. We focus especially on the Josephson selection rule among these even-parity superconductors. We find that the selection rule between quintet states is severer than that between spin-triplet states formed by two $S=1/2$ electrons. The effects of a pseudospin-active interface on the selection rule are discussed as well as those of odd-frequency Cooper pairs generated by pseudospin dependent band structures.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74256825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}