{"title":"Introduction to average Hamiltonian theory. I. Basics","authors":"Andreas Brinkmann","doi":"10.1002/cmr.a.21414","DOIUrl":null,"url":null,"abstract":"<p>Understanding the dynamics of electron or nuclear spins during a magnetic resonance experiment requires to solve the Schrödinger equation for the spin system considering all contributions to the Hamiltonian from interactions of the spins with each other and their surroundings. In general, this is a difficult task as these interaction terms can be both time-dependent and might not commute with each other. A powerful tool to analytically approximate the time evolution is average Hamiltonian theory, in which a time-independent effective Hamiltonian is taking the place of the time-dependent Hamiltonian. The effective Hamiltonian is subjected to the Magnus expansion, allowing to calculate the effective Hamiltonian to a certain order. The goal of this paper is to introduce average Hamiltonian theory in a rigorous but educational manner. The application to two composite pulses in NMR spectroscopy is used to demonstrate important aspects of average Hamiltonian theory.</p>","PeriodicalId":55216,"journal":{"name":"Concepts in Magnetic Resonance Part A","volume":"45A 6","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmr.a.21414","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part A","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmr.a.21414","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 34
Abstract
Understanding the dynamics of electron or nuclear spins during a magnetic resonance experiment requires to solve the Schrödinger equation for the spin system considering all contributions to the Hamiltonian from interactions of the spins with each other and their surroundings. In general, this is a difficult task as these interaction terms can be both time-dependent and might not commute with each other. A powerful tool to analytically approximate the time evolution is average Hamiltonian theory, in which a time-independent effective Hamiltonian is taking the place of the time-dependent Hamiltonian. The effective Hamiltonian is subjected to the Magnus expansion, allowing to calculate the effective Hamiltonian to a certain order. The goal of this paper is to introduce average Hamiltonian theory in a rigorous but educational manner. The application to two composite pulses in NMR spectroscopy is used to demonstrate important aspects of average Hamiltonian theory.
期刊介绍:
Concepts in Magnetic Resonance Part A brings together clinicians, chemists, and physicists involved in the application of magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods.
Contributors come from academic, governmental, and clinical communities, to disseminate the latest important experimental results from medical, non-medical, and analytical magnetic resonance methods, as well as related computational and theoretical advances.
Subject areas include (but are by no means limited to):
-Fundamental advances in the understanding of magnetic resonance
-Experimental results from magnetic resonance imaging (including MRI and its specialized applications)
-Experimental results from magnetic resonance spectroscopy (including NMR, EPR, and their specialized applications)
-Computational and theoretical support and prediction for experimental results
-Focused reviews providing commentary and discussion on recent results and developments in topical areas of investigation
-Reviews of magnetic resonance approaches with a tutorial or educational approach