Multimedia Contents Retrieval based on 12-Mood Vector

C. Moon, Jong Yeol Lee, Dong-Seong Kim, Byeong-Man Kim
{"title":"Multimedia Contents Retrieval based on 12-Mood Vector","authors":"C. Moon, Jong Yeol Lee, Dong-Seong Kim, Byeong-Man Kim","doi":"10.1109/ICOIN50884.2021.9334010","DOIUrl":null,"url":null,"abstract":"The preferences of Web information purchasers are changing. Cost-effectiveness is becoming less regarded than costsatisfaction, which emphasizes the purchaser’s psychological satisfaction. In applications of SNS(Social Network Services) based on folksonomy, a method to improve a user’s cost-satisfaction in multimedia content retrieval is to use the mood inherent in multimedia items but applications of SNS encounter problems due to synonyms. In our previous study, some problems of synonyms could be solved by using internal tags consisted of arousal and valence (AV) in Thayer’s Two-dimensional Model. However, in recall level 0.1, the retrieval performance of the previous study was less than a keyword-based method. In this paper, for improving the retrieval performance of recall level 0.1, a new method using 12 moods vector is proposed, and the proposed method shows good retrieval performance than the previous method and the keyword-based method.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"1 1","pages":"842-844"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9334010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The preferences of Web information purchasers are changing. Cost-effectiveness is becoming less regarded than costsatisfaction, which emphasizes the purchaser’s psychological satisfaction. In applications of SNS(Social Network Services) based on folksonomy, a method to improve a user’s cost-satisfaction in multimedia content retrieval is to use the mood inherent in multimedia items but applications of SNS encounter problems due to synonyms. In our previous study, some problems of synonyms could be solved by using internal tags consisted of arousal and valence (AV) in Thayer’s Two-dimensional Model. However, in recall level 0.1, the retrieval performance of the previous study was less than a keyword-based method. In this paper, for improving the retrieval performance of recall level 0.1, a new method using 12 moods vector is proposed, and the proposed method shows good retrieval performance than the previous method and the keyword-based method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于12-情绪向量的多媒体内容检索
网络信息购买者的偏好正在发生变化。成本效益越来越少被重视,而成本满意度更强调购买者的心理满意度。在基于大众分类法的SNS(Social Network Services)应用中,提高多媒体内容检索中用户成本满意度的一种方法是利用多媒体项目固有的情绪,但SNS的应用会遇到同义词的问题。在我们之前的研究中,在Thayer的二维模型中使用由唤醒和效价(AV)组成的内部标签可以解决同义词的一些问题。然而,在召回水平为0.1时,先前研究的检索性能低于基于关键字的方法。为了提高查全率为0.1的检索性能,本文提出了一种基于12情绪向量的检索方法,该方法的检索性能优于之前的方法和基于关键词的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on the Cluster-wise Regression Model for Bead Width in the Automatic GMA Welding GDFed: Dynamic Federated Learning for Heterogenous Device Using Graph Neural Network A Solution for Recovering Network Topology with Missing Links using Sparse Modeling Real-time health monitoring system design based on optical camera communication Multimedia Contents Retrieval based on 12-Mood Vector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1