Comparison between the different Artificial Neural Network (ANN) accuracy in diagnosis of asthma: مقارنة بين اختلاف دقة الشبكات العصبية الاصطناعية في تشخيص مرض الربو

Hanein Omar Mohamed, Basma.F.Idris Hanein Omar Mohamed, Basma.F.Idris
{"title":"Comparison between the different Artificial Neural Network (ANN) accuracy in diagnosis of asthma: مقارنة بين اختلاف دقة الشبكات العصبية الاصطناعية في تشخيص مرض الربو","authors":"Hanein Omar Mohamed, Basma.F.Idris Hanein Omar Mohamed, Basma.F.Idris","doi":"10.26389/ajsrp.n260421","DOIUrl":null,"url":null,"abstract":"Asthma is a chronic disease that is caused by inflammation of airways. Diagnosis, predication and classification of asthmatic are one of the major attractive areas of research for decades by using different and recent techniques, however the main problem of asthma is misdiagnosis. This paper simplifies and compare between different Artificial Neural Network techniques used to solve this problem by using different algorithms to getting a high level of accuracyin diagnosis, prediction, and classification of asthma like: (data mining algorithms, machine learning algorithms, deep machine learning algorithms), depending and passing through three stages: data acquisition, feature extracting, data classification. According to the comparison of different techniques the high accuracy achieved by ANN was (98.85%), and the low accuracy of it was (80%), despite of the accuracy achieved by Support Vector Machine (SVM) was (86%) when used Mel Frequency Cepstral Coefficient MFCC for feature extraction, while the accuracy was (99.34%) when used Relief for extracting feature. Based in our comparison we recommend that if the researchers used the same techniques they should to return to previous studies it to get high accuracy.","PeriodicalId":15747,"journal":{"name":"Journal of engineering sciences and information technology","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering sciences and information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26389/ajsrp.n260421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Asthma is a chronic disease that is caused by inflammation of airways. Diagnosis, predication and classification of asthmatic are one of the major attractive areas of research for decades by using different and recent techniques, however the main problem of asthma is misdiagnosis. This paper simplifies and compare between different Artificial Neural Network techniques used to solve this problem by using different algorithms to getting a high level of accuracyin diagnosis, prediction, and classification of asthma like: (data mining algorithms, machine learning algorithms, deep machine learning algorithms), depending and passing through three stages: data acquisition, feature extracting, data classification. According to the comparison of different techniques the high accuracy achieved by ANN was (98.85%), and the low accuracy of it was (80%), despite of the accuracy achieved by Support Vector Machine (SVM) was (86%) when used Mel Frequency Cepstral Coefficient MFCC for feature extraction, while the accuracy was (99.34%) when used Relief for extracting feature. Based in our comparison we recommend that if the researchers used the same techniques they should to return to previous studies it to get high accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
哮喘是由呼吸道炎症引起的慢性疾病。哮喘的诊断、预测和分类是近年来研究的热点之一,但哮喘的主要问题是误诊。本文对不同的人工神经网络技术进行了简化和比较,通过使用不同的算法(数据挖掘算法、机器学习算法、深度机器学习算法),通过数据采集、特征提取、数据分类三个阶段,得到了高水平的哮喘诊断、预测和分类的准确性。通过对不同技术的比较,ANN在使用Mel Frequency Cepstral Coefficient MFCC进行特征提取时,准确率高达(98.85%),而支持向量机(SVM)在使用Mel Frequency Cepstral Coefficient MFCC进行特征提取时,准确率高达(86%),而使用Relief进行特征提取时,准确率高达(99.34%),ANN的准确率较低(80%)。根据我们的比较,我们建议,如果研究人员使用相同的技术,他们应该回到以前的研究,以获得更高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
تكييف خوارزمية النحل مع مستخرج الأنماط الشامل لتحسين عملية المطابقة لبصمات الأصابع Visual Pollution of Commercial Street Sidewalks: A Case Study of Design Standards in Al-Hilla City, Iraq War disasters and their effects on urban structure, historic buildings, local people and architectural heritage مراجعة أدبية منهجية لمنصات سلسلة الكتل الحديثة مراجعة على التقييم الاقتصادي لدمج المواد المغلفة متغيرة الطور في أغلفة المباني
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1