Modelos predictivos en reproducción asistida: revisión sistemática y análisis crítico

Joana Peñarrubia , Juan Antonio García-Velasco , Jose Landeras
{"title":"Modelos predictivos en reproducción asistida: revisión sistemática y análisis crítico","authors":"Joana Peñarrubia ,&nbsp;Juan Antonio García-Velasco ,&nbsp;Jose Landeras","doi":"10.1016/j.medre.2019.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>In medicine, there is a growing interest in predicting the individual risk of patients to develop a specific health problem or to predict their response to a treatment. Since in vitro fertilisation (IVF) an be physically and emotionally stressful, and as it is not free of health risks, the couples candidates for IVF should be well informed about the chances of success before each treatment cycle. A systematic review and a critical analysis of predictive models of ovarian response to stimulation and pregnancy after IVF is presented, showing, that in many cases the quality of these models is low. The inadequate methodology when developing a predictive model makes it difficult to apply in clinical practice. It is essential to develop, and to have methodologically appropriate predictive models, in order to optimise predictive capacity in assisted reproduction and achieve a true individualisation and personalisation in reproductive medicine.</p></div>","PeriodicalId":100911,"journal":{"name":"Medicina Reproductiva y Embriología Clínica","volume":"6 2","pages":"Pages 63-74"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicina Reproductiva y Embriología Clínica","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2340932019300076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In medicine, there is a growing interest in predicting the individual risk of patients to develop a specific health problem or to predict their response to a treatment. Since in vitro fertilisation (IVF) an be physically and emotionally stressful, and as it is not free of health risks, the couples candidates for IVF should be well informed about the chances of success before each treatment cycle. A systematic review and a critical analysis of predictive models of ovarian response to stimulation and pregnancy after IVF is presented, showing, that in many cases the quality of these models is low. The inadequate methodology when developing a predictive model makes it difficult to apply in clinical practice. It is essential to develop, and to have methodologically appropriate predictive models, in order to optimise predictive capacity in assisted reproduction and achieve a true individualisation and personalisation in reproductive medicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
辅助生殖的预测模型:系统回顾和批判性分析
在医学上,人们对预测患者发展特定健康问题的个体风险或预测他们对治疗的反应越来越感兴趣。由于体外受精(IVF)在身体和情感上都有压力,而且它也不是没有健康风险,因此试管受精的候选夫妇应该在每个治疗周期之前充分了解成功的机会。对体外受精后卵巢对刺激和妊娠反应的预测模型进行了系统回顾和批判性分析,结果表明,在许多情况下,这些模型的质量很低。在开发预测模型时,不充分的方法使其难以应用于临床实践。为了优化辅助生殖的预测能力和实现生殖医学的真正个体化和个性化,必须发展和拥有方法上适当的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extended embryo culture up to 14 days Impact of administration route on serum progesterone levels in women undergoing artificial endometrial preparation Efecto de la abstinencia sexual masculina en los resultados reproductivos Sperm DNA fragmentation and microfluidics: A new era in human sperm selection Aplicación de la inteligencia artificial en el laboratorio de reproducción asistida. Trabajo de revisión
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1