Towards Latent Attribute Discovery From Triplet Similarities

Ishan Nigam, P. Tokmakov, Deva Ramanan
{"title":"Towards Latent Attribute Discovery From Triplet Similarities","authors":"Ishan Nigam, P. Tokmakov, Deva Ramanan","doi":"10.1109/ICCV.2019.00049","DOIUrl":null,"url":null,"abstract":"This paper addresses the task of learning latent attributes from triplet similarity comparisons. Consider, for instance, the three shoes in Fig. 1(a). They can be compared according to color, comfort, size, or shape resulting in different rankings. Most approaches for embedding learning either make a simplifying assumption - that all inputs are comparable under a single criterion, or require expensive attribute supervision. We introduce Latent Similarity Networks (LSNs): a simple and effective technique to discover the underlying latent notions of similarity in data without any explicit attribute supervision. LSNs can be trained with standard triplet supervision and learn several latent embeddings that can be used to compare images under multiple notions of similarity. LSNs achieve state-of-the-art performance on UT-Zappos-50k Shoes and Celeb-A Faces datasets and also demonstrate the ability to uncover meaningful latent attributes.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"6 1","pages":"402-410"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper addresses the task of learning latent attributes from triplet similarity comparisons. Consider, for instance, the three shoes in Fig. 1(a). They can be compared according to color, comfort, size, or shape resulting in different rankings. Most approaches for embedding learning either make a simplifying assumption - that all inputs are comparable under a single criterion, or require expensive attribute supervision. We introduce Latent Similarity Networks (LSNs): a simple and effective technique to discover the underlying latent notions of similarity in data without any explicit attribute supervision. LSNs can be trained with standard triplet supervision and learn several latent embeddings that can be used to compare images under multiple notions of similarity. LSNs achieve state-of-the-art performance on UT-Zappos-50k Shoes and Celeb-A Faces datasets and also demonstrate the ability to uncover meaningful latent attributes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从三联体相似性中发现潜在属性
本文研究了从三联体相似性比较中学习潜在属性的问题。以图1(a)中的三只鞋为例。它们可以根据颜色、舒适度、大小或形状进行比较,从而产生不同的排名。大多数嵌入学习的方法要么做一个简化的假设——所有输入在单一标准下是可比的,要么需要昂贵的属性监督。我们介绍了潜在相似网络(lsn):一种简单而有效的技术,可以在没有任何显式属性监督的情况下发现数据中潜在的相似概念。lsn可以用标准的三联体监督来训练,并学习几个潜在的嵌入,这些嵌入可以用来比较多个相似概念下的图像。lsn在UT-Zappos-50k Shoes和celebrity -a Faces数据集上实现了最先进的性能,并且还展示了发现有意义的潜在属性的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very Long Natural Scenery Image Prediction by Outpainting VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation Towards Latent Attribute Discovery From Triplet Similarities Gaze360: Physically Unconstrained Gaze Estimation in the Wild Attention Bridging Network for Knowledge Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1