A novel approach to account for shape-morphing and kinetic shading systems in building energy performance simulations

IF 2.2 4区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Building Performance Simulation Pub Date : 2022-11-07 DOI:10.1080/19401493.2022.2142294
F. Carlucci, R. Loonen, F. Fiorito, J. Hensen
{"title":"A novel approach to account for shape-morphing and kinetic shading systems in building energy performance simulations","authors":"F. Carlucci, R. Loonen, F. Fiorito, J. Hensen","doi":"10.1080/19401493.2022.2142294","DOIUrl":null,"url":null,"abstract":"This paper proposes an innovative approach to analyse the energy behaviour of complex kinetic shading systems. Although several studies have analysed this topic, many are focused only on certain aspects or on simple shading systems due to a lack of tools for running reliable energy simulations on complex systems. This study aims to develop and validate a tool based on Python and EnergyPlus that can consider the continuous nature of the energy simulation and analyse complex kinetic systems. Simply providing an EnergyPlus model and a model of the shading configurations, the algorithm provides as output a comparison sheet to evaluate the performance of the system. The paper provides a description of the tools and studies focused on this topic; subsequently, a methodological insight is presented to explain the workflow, its validation, and the algorithm developed. Finally, the algorithm is tested on a case study to analyse a kinetic shading system. Abbreviations: DSF: Dynamic Shading File; EDSM: Equivalent Dynamic Shading Model; EMS: Energy Management System; ESSM: Equivalent Static Shading Model; Gf: Incident irradiance; Gf max: Incident irradiance threshold; PV: Photovoltaic; ST1/2/3: State 1/2/3; SSM: Static Shading Model; SF: Sunlit Fraction; SSF: Static Shading File; To: Outdoor temperature; To max 1/2: Outdoor temperature threshold 1/2; Tsol: Solar transmittance","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"36 1","pages":"346 - 365"},"PeriodicalIF":2.2000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2022.2142294","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes an innovative approach to analyse the energy behaviour of complex kinetic shading systems. Although several studies have analysed this topic, many are focused only on certain aspects or on simple shading systems due to a lack of tools for running reliable energy simulations on complex systems. This study aims to develop and validate a tool based on Python and EnergyPlus that can consider the continuous nature of the energy simulation and analyse complex kinetic systems. Simply providing an EnergyPlus model and a model of the shading configurations, the algorithm provides as output a comparison sheet to evaluate the performance of the system. The paper provides a description of the tools and studies focused on this topic; subsequently, a methodological insight is presented to explain the workflow, its validation, and the algorithm developed. Finally, the algorithm is tested on a case study to analyse a kinetic shading system. Abbreviations: DSF: Dynamic Shading File; EDSM: Equivalent Dynamic Shading Model; EMS: Energy Management System; ESSM: Equivalent Static Shading Model; Gf: Incident irradiance; Gf max: Incident irradiance threshold; PV: Photovoltaic; ST1/2/3: State 1/2/3; SSM: Static Shading Model; SF: Sunlit Fraction; SSF: Static Shading File; To: Outdoor temperature; To max 1/2: Outdoor temperature threshold 1/2; Tsol: Solar transmittance
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的方法来说明形状变形和动态遮阳系统在建筑能源性能模拟
本文提出了一种创新的方法来分析复杂的动态遮阳系统的能量行为。虽然有几项研究分析了这个主题,但由于缺乏在复杂系统上运行可靠的能量模拟的工具,许多研究只关注某些方面或简单的遮阳系统。本研究旨在开发和验证一个基于Python和EnergyPlus的工具,该工具可以考虑能量模拟的连续性,并分析复杂的动力学系统。简单地提供一个EnergyPlus模型和一个遮阳配置模型,该算法提供一个输出比较表来评估系统的性能。本文介绍了本课题的工具和相关研究;随后,提出了一种方法学的见解来解释工作流,其验证和开发的算法。最后,以动态遮阳系统为例,对该算法进行了验证。DSF:动态着色文件;等效动态遮阳模型;EMS:能源管理系统;等效静态遮阳模型;Gf:入射辐照度;Gf max:入射辐照度阈值;PV:光伏;ST1/2/3:状态1/2/3;SSM:静态遮阳模型;SF: Sunlit Fraction;SSF:静态阴影文件;To:室外温度;至高1/2:室外温度阈值1/2;Tsol:太阳透过率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Building Performance Simulation
Journal of Building Performance Simulation CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
5.50
自引率
12.00%
发文量
55
审稿时长
12 months
期刊介绍: The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies We welcome building performance simulation contributions that explore the following topics related to buildings and communities: -Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics). -Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems. -Theoretical aspects related to occupants, weather data, and other boundary conditions. -Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid. -Uncertainty, sensitivity analysis, and calibration. -Methods and algorithms for validating models and for verifying solution methods and tools. -Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics. -Techniques for educating and training tool users. -Software development techniques and interoperability issues with direct applicability to building performance simulation. -Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.
期刊最新文献
Comparing overheating risk and mitigation strategies for two Canadian schools by using building simulation calibrated with measured data Using Fourier series to obtain cross periodic wall response factors Limitations and issues of conventional artificial neural network-based surrogate models for building energy retrofit An empirical review of methods to assess overheating in buildings in the context of changes to extreme heat events Coupling BIM and detailed modelica simulations of HVAC systems in a common data environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1