Fulde–Ferrell–Larkin–Ovchinnikov State in Perpendicular Magnetic Fields in Strongly Pauli-Limited Quasi-Two-Dimensional Superconductors

H. Shimahara
{"title":"Fulde–Ferrell–Larkin–Ovchinnikov State in Perpendicular Magnetic Fields in Strongly Pauli-Limited Quasi-Two-Dimensional Superconductors","authors":"H. Shimahara","doi":"10.7566/JPSJ.90.044706","DOIUrl":null,"url":null,"abstract":"We examine the Fermi-surface effect called the nesting effect for the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in strongly Pauli-limited quasi-two-dimensional superconductors,focusing on the effect of three-dimensional factors, such as interlayer electron transfer, interlayer pairing, and off-plane magnetic fields including those perpendicular to the most conductive layers (hereinafter called the perpendicular fields). It is known that the nesting effect for the FFLO state can be strong in quasi-low-dimensional systems in which the orbital pair-breaking effect is suppressed by applying the magnetic field parallel to the layers. Hence, it has sometimes been suggested that it may not work for perpendicular fields. We illustrate that, contrary to this view, the nesting effect can strongly stabilize the FFLO state for perpendicular fields as well as for parallel fields when t_z is small so that the Fermi surfaces are open in the k_z-direction, where t_z denotes the interlayer transfer energy. In particular, the nesting effect in perpendicular fields can be strong in interlayer states. For example, in systems with cylindrical Fermi surfaces warped by t_z /= 0, interlayer states with Delta_{k} propto sin k_z exhibit mu_e H_c approx 1.65 Delta_{alpha 0} for perpendicular fields, which is much larger than typical values for parallel fields, such as mu_e H_c = Delta_s0 of the s-wave state and mu_e H_c approx 1.28 Delta_d0 of the d-wave state in cylindrical systems with t_z = 0. Here, mu_e and H_c are the electron magnetic moment and upper critical field of the FFLO state at T = 0, respectively, and Delta_{alpha 0} = 2 omega_c e^{- 1/lambda_alpha. We discuss the possible relevance of the nesting effect to the high-field superconducting phases in perpendicular fields observed in the compounds CeCoIn_5 and FeSe, which are candidates for the FFLO state.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7566/JPSJ.90.044706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We examine the Fermi-surface effect called the nesting effect for the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in strongly Pauli-limited quasi-two-dimensional superconductors,focusing on the effect of three-dimensional factors, such as interlayer electron transfer, interlayer pairing, and off-plane magnetic fields including those perpendicular to the most conductive layers (hereinafter called the perpendicular fields). It is known that the nesting effect for the FFLO state can be strong in quasi-low-dimensional systems in which the orbital pair-breaking effect is suppressed by applying the magnetic field parallel to the layers. Hence, it has sometimes been suggested that it may not work for perpendicular fields. We illustrate that, contrary to this view, the nesting effect can strongly stabilize the FFLO state for perpendicular fields as well as for parallel fields when t_z is small so that the Fermi surfaces are open in the k_z-direction, where t_z denotes the interlayer transfer energy. In particular, the nesting effect in perpendicular fields can be strong in interlayer states. For example, in systems with cylindrical Fermi surfaces warped by t_z /= 0, interlayer states with Delta_{k} propto sin k_z exhibit mu_e H_c approx 1.65 Delta_{alpha 0} for perpendicular fields, which is much larger than typical values for parallel fields, such as mu_e H_c = Delta_s0 of the s-wave state and mu_e H_c approx 1.28 Delta_d0 of the d-wave state in cylindrical systems with t_z = 0. Here, mu_e and H_c are the electron magnetic moment and upper critical field of the FFLO state at T = 0, respectively, and Delta_{alpha 0} = 2 omega_c e^{- 1/lambda_alpha. We discuss the possible relevance of the nesting effect to the high-field superconducting phases in perpendicular fields observed in the compounds CeCoIn_5 and FeSe, which are candidates for the FFLO state.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强保利限制准二维超导体垂直磁场中的Fulde-Ferrell-Larkin-Ovchinnikov态
我们研究了强保利限制准二维超导体中富尔德-费雷尔-拉金-奥夫钦尼科夫(FFLO)态的费米表面效应,即嵌套效应,重点研究了三维因素的影响,如层间电子转移、层间配对和面外磁场,包括垂直于最导电层的磁场(以下称为垂直场)。已知在准低维系统中,平行施加磁场抑制轨道对断裂效应时,FFLO态的嵌套效应会很强。因此,有时有人提出,它可能不适用于垂直的场。我们证明,与这种观点相反,当t_z很小时,嵌套效应可以强烈地稳定垂直场和平行场的FFLO状态,从而使费米表面在k_z方向上打开,其中t_z表示层间传递能量。特别是,在层间状态下,垂直场中的嵌套效应可能会很强。例如,在圆柱形费米面被t_z /= 0翘曲的系统中,具有δ ta_{k} propto sin k_z的层间态在垂直场中表现为mu_e H_c约1.65 δ ta_{α 0},这比平行场的典型值要大得多,例如在t_z = 0的圆柱形系统中s波态的mu_e H_c = δ ta_50和d波态的mu_e H_c约1.28 δ ta_0。其中,mu_e和H_c分别为T = 0时FFLO态的电子磁矩和上临界场,δ ta_{alpha 0} = 2 omega_c e^{- 1/lambda_alpha。我们讨论了嵌套效应与化合物CeCoIn_5和FeSe在垂直场中观察到的高场超导相的可能相关性,它们是FFLO态的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flux trapping in superconducting hydrides under high pressure. Nodal superconductivity and superconducting domes in the topological Kagome metal CsV3Sb5 Bereziskii-Kosterlitz-Thouless transition in the Weyl system PtBi2 Josephson effect of superconductors with J=32 electrons Insulating regime of an underdamped current-biased Josephson junction supporting Z3 and Z4 parafermions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1