Chidi Onyema Egbeocha, Sorayya Malek, C. U. Emenike, P. Milow
{"title":"Feasting on microplastics: ingestion by and effects on marine organisms","authors":"Chidi Onyema Egbeocha, Sorayya Malek, C. U. Emenike, P. Milow","doi":"10.3354/AB00701","DOIUrl":null,"url":null,"abstract":"Ingestion of microplastics by marine organisms is a common occurrence in marine ecosystems, but the experimental demonstration of the effects of ingested microplastics on marine organisms has only recently become an important subject of research. In this review, the ingestion of microplastics by marine organisms, its attendant potential consequences and specific hypothetical questions for further studies are discussed. The formation of heteroaggregates in the gut of prey organisms may delay microplastic clearance, potentially increasing the chances of microplastic trophic transfer to predators. Also, the survival and energetics of keystone species at lower trophic levels are negatively affected by ingestion of microplastics, thereby raising questions about the transfer of energy and nutrients to organisms at higher trophic levels. Further, since microplastics are able to adsorb and concentrate organic pollutants up to 1 million times more than the pollutant concentration in ambient waters, the ingestion of such small plastic fragments is, a probable route for the entrance and biomagnification of toxic chemicals in the marine food web. However, the equilibrium state between pollutant concentration in marine organisms and that of surrounding waters makes it unclear whether the ingestion of microplastics actually increases the pollutant load of organisms. Finally, microplastic ingestion can cause endocrine disorders in adult fish, which could result in neoplasia via epigenetic programming. Therefore, microplastic pollution may be a contributory cause of increased incidents of neoplasia in marine animals. The amount of microplastics in marine waters will steadily rise, and questions about their impact on marine ecosystems will linger.","PeriodicalId":8111,"journal":{"name":"Aquatic Biology","volume":"13 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3354/AB00701","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 91
Abstract
Ingestion of microplastics by marine organisms is a common occurrence in marine ecosystems, but the experimental demonstration of the effects of ingested microplastics on marine organisms has only recently become an important subject of research. In this review, the ingestion of microplastics by marine organisms, its attendant potential consequences and specific hypothetical questions for further studies are discussed. The formation of heteroaggregates in the gut of prey organisms may delay microplastic clearance, potentially increasing the chances of microplastic trophic transfer to predators. Also, the survival and energetics of keystone species at lower trophic levels are negatively affected by ingestion of microplastics, thereby raising questions about the transfer of energy and nutrients to organisms at higher trophic levels. Further, since microplastics are able to adsorb and concentrate organic pollutants up to 1 million times more than the pollutant concentration in ambient waters, the ingestion of such small plastic fragments is, a probable route for the entrance and biomagnification of toxic chemicals in the marine food web. However, the equilibrium state between pollutant concentration in marine organisms and that of surrounding waters makes it unclear whether the ingestion of microplastics actually increases the pollutant load of organisms. Finally, microplastic ingestion can cause endocrine disorders in adult fish, which could result in neoplasia via epigenetic programming. Therefore, microplastic pollution may be a contributory cause of increased incidents of neoplasia in marine animals. The amount of microplastics in marine waters will steadily rise, and questions about their impact on marine ecosystems will linger.
期刊介绍:
AB publishes rigorously refereed and carefully selected Feature Articles, Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections, Opinion Pieces (previously called ''As I See It'') (for details consult the Guidelines for Authors) concerned with the biology, physiology, biochemistry and genetics (including the ’omics‘) of all aquatic organisms under laboratory and field conditions, and at all levels of organisation and investigation. Areas covered include:
-Biological aspects of biota: Evolution and speciation; life histories; biodiversity, biogeography and phylogeography; population genetics; biological connectedness between marine and freshwater biota; paleobiology of aquatic environments; invasive species.
-Biochemical and physiological aspects of aquatic life; synthesis and conversion of organic matter (mechanisms of auto- and heterotrophy, digestion, respiration, nutrition); thermo-, ion, osmo- and volume-regulation; stress and stress resistance; metabolism and energy budgets; non-genetic and genetic adaptation.
-Species interactions: Environment–organism and organism–organism interrelationships; predation: defenses (physical and chemical); symbioses.
-Molecular biology of aquatic life.
-Behavior: Orientation in space and time; migrations; feeding and reproductive behavior; agonistic behavior.
-Toxicology and water-quality effects on organisms; anthropogenic impacts on aquatic biota (e.g. pollution, fisheries); stream regulation and restoration.
-Theoretical biology: mathematical modelling of biological processes and species interactions.
-Methodology and equipment employed in aquatic biological research; underwater exploration and experimentation.
-Exploitation of aquatic biota: Fisheries; cultivation of aquatic organisms: use, management, protection and conservation of living aquatic resources.
-Reproduction and development in marine, brackish and freshwater organisms