Cumulative markedness effects and (non-)linearity in phonotactics

IF 0.9 2区 文学 0 LANGUAGE & LINGUISTICS Glossa-A Journal of General Linguistics Pub Date : 2022-03-15 DOI:10.16995/glossa.5713
Canaan Breiss, Adam Albright
{"title":"Cumulative markedness effects and (non-)linearity in phonotactics","authors":"Canaan Breiss, Adam Albright","doi":"10.16995/glossa.5713","DOIUrl":null,"url":null,"abstract":"This study uses an Artificial Grammar Learning experiment to test for a synchronic relationship between the severity of an individual phonotactic violation and the linearity of its cumulative interaction with other violations, prompted by previous experimental findings (Albright 2012, Breiss (submitted)). We find that as individual phonotactic patterns are made more exceptionful, their interaction moves from linear to super-linear, and argue that this provides evidence for a non-linear relationship between Harmony and probability. We evaluate five contemporary phonological frameworks using this data, and find that those which incorporate such a non-linear relationship -- Maximum Entropy HG and Noisy HG -- are able to capture the super-linear patterns observed significantly better than other frameworks. Further, we demonstrate that a MaxEnt model provided the same training data as experimental participants exhibits similar emergent super-linear cumulativity, and explore the weighting conditions under which MaxEnt models yield sub-linear, linear, and super-linear cumulativity.","PeriodicalId":46319,"journal":{"name":"Glossa-A Journal of General Linguistics","volume":"24 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glossa-A Journal of General Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.16995/glossa.5713","RegionNum":2,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 10

Abstract

This study uses an Artificial Grammar Learning experiment to test for a synchronic relationship between the severity of an individual phonotactic violation and the linearity of its cumulative interaction with other violations, prompted by previous experimental findings (Albright 2012, Breiss (submitted)). We find that as individual phonotactic patterns are made more exceptionful, their interaction moves from linear to super-linear, and argue that this provides evidence for a non-linear relationship between Harmony and probability. We evaluate five contemporary phonological frameworks using this data, and find that those which incorporate such a non-linear relationship -- Maximum Entropy HG and Noisy HG -- are able to capture the super-linear patterns observed significantly better than other frameworks. Further, we demonstrate that a MaxEnt model provided the same training data as experimental participants exhibits similar emergent super-linear cumulativity, and explore the weighting conditions under which MaxEnt models yield sub-linear, linear, and super-linear cumulativity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声战术的累积标记效应和(非线性)线性
本研究使用人工语法学习实验来测试个体音致性违规的严重程度与其与其他违规行为的累积相互作用的线性之间的共时关系,这是由先前的实验结果所提示的(Albright 2012, Breiss(提交))。我们发现,随着单个音感统模式变得更加特殊,它们的相互作用从线性转向超线性,并认为这为和声和概率之间的非线性关系提供了证据。我们利用这些数据评估了五个当代音系框架,并发现那些包含这种非线性关系的框架——最大熵汞柱和噪声汞柱——能够比其他框架更好地捕捉到观察到的超线性模式。此外,我们证明了MaxEnt模型提供了与实验参与者相同的训练数据,表现出类似的涌现超线性累积性,并探索了MaxEnt模型产生亚线性、线性和超线性累积性的加权条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
87
审稿时长
62 weeks
期刊最新文献
Title Pending 10160 Title Pending 8932 Title Pending 8653 Title Pending 10229 Title Pending 9904
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1