Adsorption of Random Copolymer on a Chemically Heterogeneous Periodic Stripe-Patterned Surface

IF 1.6 4区 化学 Q4 POLYMER SCIENCE Polymer Science, Series C Pub Date : 2023-08-31 DOI:10.1134/S1811238223700327
A. S. Ivanova, A. A. Polotsky
{"title":"Adsorption of Random Copolymer on a Chemically Heterogeneous Periodic Stripe-Patterned Surface","authors":"A. S. Ivanova,&nbsp;A. A. Polotsky","doi":"10.1134/S1811238223700327","DOIUrl":null,"url":null,"abstract":"<p>The adsorption of a single random copolymer chain containing correlations in a sequence on the chemically heterogeneous periodic surface with the alternating striped texture is studied theoretically. The problem is solved within the framework of a partially directed walk polymer model in three dimensions using the generating functions approach and the annealed disorder approximation for averaging over the ensemble of random sequences of units in the copolymer. Dependences of the adsorption transition point on the composition of the random copolymer and the degree of correlation in the random sequence of units for various periodic surfaces are presented. It is shown that for compositionally symmetric and weakly symmetric surfaces there is the optimal composition of the random copolymer and the degree of correlation in the sequence of units, at which the inverse temperature corresponding to the adsorption transition point has a local minimum. In the case of the compositionally symmetric surface, the “optimal” random copolymer is also symmetric in composition. For surfaces with a pronounced composition asymmetry the best adsorbent is a homopolymer complementary to sites that prevail on the surface. The degree of asymmetry range, in which the dependence of the inverse transition temperature on the copolymer composition and the correlation parameter exhibits the local minimum, is fairly narrow.</p>","PeriodicalId":740,"journal":{"name":"Polymer Science, Series C","volume":"65 1","pages":"60 - 70"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series C","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1811238223700327","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The adsorption of a single random copolymer chain containing correlations in a sequence on the chemically heterogeneous periodic surface with the alternating striped texture is studied theoretically. The problem is solved within the framework of a partially directed walk polymer model in three dimensions using the generating functions approach and the annealed disorder approximation for averaging over the ensemble of random sequences of units in the copolymer. Dependences of the adsorption transition point on the composition of the random copolymer and the degree of correlation in the random sequence of units for various periodic surfaces are presented. It is shown that for compositionally symmetric and weakly symmetric surfaces there is the optimal composition of the random copolymer and the degree of correlation in the sequence of units, at which the inverse temperature corresponding to the adsorption transition point has a local minimum. In the case of the compositionally symmetric surface, the “optimal” random copolymer is also symmetric in composition. For surfaces with a pronounced composition asymmetry the best adsorbent is a homopolymer complementary to sites that prevail on the surface. The degree of asymmetry range, in which the dependence of the inverse transition temperature on the copolymer composition and the correlation parameter exhibits the local minimum, is fairly narrow.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无序共聚物在化学非均相周期性条纹表面的吸附
从理论上研究了含序无规共聚物链在具有交替条纹结构的化学非均质周期性表面上的吸附。该问题在三维部分定向行走聚合物模型的框架内解决,采用生成函数法和退火无序逼近法对共聚物中随机单元序列的集合进行平均。介绍了吸附过渡点与无规共聚物组成的关系以及不同周期表面的随机单元序列的相关程度。结果表明,对于成分对称和弱对称表面,存在最优的无规共聚物组成和单元序列的关联度,吸附过渡点对应的逆温度有局部最小值。在组成对称表面的情况下,“最佳”无规共聚物在组成上也是对称的。对于具有明显组成不对称的表面,最好的吸附剂是与表面上普遍存在的位点互补的均聚物。反转变温度对共聚物组成和相关参数的依赖表现出局部最小值,这一不对称程度范围相当窄。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Science, Series C
Polymer Science, Series C 工程技术-高分子科学
CiteScore
3.00
自引率
4.50%
发文量
21
审稿时长
>12 weeks
期刊介绍: Polymer Science, Series C (Selected Topics) is a journal published in collaboration with the Russian Academy of Sciences. Series C (Selected Topics) includes experimental and theoretical papers and reviews on the selected actual topics of macromolecular science chosen by the editorial board (1 issue a year). Submission is possible by invitation only. All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed
期刊最新文献
On the 100th Anniversary of Nikolai Sergeevich Enikolopov (1924–1993) Morphology and Physical-Chemical Properties of Composite Materials Based on Polyolefins and Chitosan Self-Healing Polyurethanes Based on Natural Raw Materials Features of Polymer Modification in a Supercritical Carbon Dioxide Environment Modern Technologies for Creating Powdered Cellulose and Nanocellulose Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1