Controlling spin and valley hall effect in monolayer WSe2 at elevated temperatures

Xintong Li, Zhida Liu, Yihan Liu, Suyogya Karki, Xiaoqin Li, D. Akinwande, J. Incorvia
{"title":"Controlling spin and valley hall effect in monolayer WSe2 at elevated temperatures","authors":"Xintong Li, Zhida Liu, Yihan Liu, Suyogya Karki, Xiaoqin Li, D. Akinwande, J. Incorvia","doi":"10.1117/12.2633913","DOIUrl":null,"url":null,"abstract":"The spin and valley physics in 2-dimensional van der Waals materials provides a unique platform for novel applications in spintronics and valleytronics. 2H phase transition metal dichalcogenides (TMD) monolayers possesses broken inversion symmetry and strong spin-orbit coupling, leading to a coupled spin and valley physics that makes them better candidates for these applications. For practical device applications, spin and valley Hall effect (SVHE) is a good way of charge to spin and charge to valley conversion, making the electrical generation of spin and valley polarization possible. While SVHE has been observed via optical measurements at cryotemperatures below 30 K, the behavior at elevated temperatures and thorough understanding of the data are still lacking. In this work we conduct spatial Kerr rotation (KR) measurements on monolayer tungsten diselenide (WSe2) field effect transistors and study the electrical control and temperature dependence of SVHE. We image the distribution of the spin and valley polarization directly and find clear evidence of the spin and valley accumulation at the edges. We show that the SVHE can be electrically modulated by the gate and drain bias, and the polarization persists at elevated temperatures. We then conduct four-port electrical test reflection spectra measurement and use a drift-diffusion model to interpret the data and extract key parameters. A lower-bound spin/valley lifetime is predicted of 40 ns and a mean free path of 240 nm below 90 K. The spin/valley polarization on the edge is calculated to be ~4% at 45 K. WSe2-on-hBN samples are prepared as well, and the KR measurements on these samples are discussed.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"46 1","pages":"1220507 - 1220507-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2633913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The spin and valley physics in 2-dimensional van der Waals materials provides a unique platform for novel applications in spintronics and valleytronics. 2H phase transition metal dichalcogenides (TMD) monolayers possesses broken inversion symmetry and strong spin-orbit coupling, leading to a coupled spin and valley physics that makes them better candidates for these applications. For practical device applications, spin and valley Hall effect (SVHE) is a good way of charge to spin and charge to valley conversion, making the electrical generation of spin and valley polarization possible. While SVHE has been observed via optical measurements at cryotemperatures below 30 K, the behavior at elevated temperatures and thorough understanding of the data are still lacking. In this work we conduct spatial Kerr rotation (KR) measurements on monolayer tungsten diselenide (WSe2) field effect transistors and study the electrical control and temperature dependence of SVHE. We image the distribution of the spin and valley polarization directly and find clear evidence of the spin and valley accumulation at the edges. We show that the SVHE can be electrically modulated by the gate and drain bias, and the polarization persists at elevated temperatures. We then conduct four-port electrical test reflection spectra measurement and use a drift-diffusion model to interpret the data and extract key parameters. A lower-bound spin/valley lifetime is predicted of 40 ns and a mean free path of 240 nm below 90 K. The spin/valley polarization on the edge is calculated to be ~4% at 45 K. WSe2-on-hBN samples are prepared as well, and the KR measurements on these samples are discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高温下控制单层WSe2的自旋和谷霍尔效应
二维范德华材料中的自旋和谷物理为自旋电子学和谷电子学的新应用提供了一个独特的平台。2H相过渡金属二硫族化合物(TMD)单层具有破缺的反演对称性和强自旋-轨道耦合,导致自旋和谷耦合物理,使其成为这些应用的更好候选者。在实际器件应用中,自旋谷霍尔效应(SVHE)是电荷自旋和电荷谷转换的一种很好的方式,使自旋和谷极化的产生成为可能。虽然在低于30 K的低温下通过光学测量可以观察到SVHE,但在高温下的行为和对数据的全面了解仍然缺乏。本文对单层二硒化钨(WSe2)场效应晶体管进行了空间克尔旋转(KR)测量,并研究了SVHE的电气控制和温度依赖性。我们直接成像了自旋和谷极化的分布,并在边缘找到了自旋和谷积累的明显证据。我们发现SVHE可以通过栅极和漏极偏置进行电调制,并且极化在高温下持续存在。然后,我们进行了四端口电测试反射光谱测量,并使用漂移扩散模型来解释数据并提取关键参数。预计自旋/谷寿命的下限为40 ns,平均自由程为240 nm,低于90 K。在45 K时,计算出边缘的自旋/谷极化为~4%。制备了WSe2-on-hBN样品,并讨论了这些样品的KR测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Moiré metalens-based fluorescence optical sectioning microscopy Novel high entropy alloy (AgAlCuNiTi) hybridized MoS2/Si nanowires heterostructure with plasmonic enhanced photocatalytic activity Structured surface plasmon generated with interfered evanescent waves Dielectric nanoantenna stickers for photoluminescence control A new optomechanical interaction and a model with non-trivial classical dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1