Exothermic Formation Reactions as Local Heat Sources

IF 10.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Annual Review of Materials Research Pub Date : 2022-04-18 DOI:10.1146/annurev-matsci-081720-124041
Shane Q. Arlington, G. Fritz, T. Weihs
{"title":"Exothermic Formation Reactions as Local Heat Sources","authors":"Shane Q. Arlington, G. Fritz, T. Weihs","doi":"10.1146/annurev-matsci-081720-124041","DOIUrl":null,"url":null,"abstract":"This review focuses on the properties of reactive materials (RMs) that enable exothermic formation reactions and their application as local heat sources. We examine how the heat produced by these formation reactions can enable a range of useful functions including bonding, sealing, ignition, signaling, and built-in degradation. We begin by describing the chemistries, geometries, microstructures, and fabrication of RMs. We then explore the magnitude and measurement of their stored chemical energies and the rates and mechanisms by which the stored energy can be released to generate useful heat. The majority of the review focuses on how the released heat can be modeled and used to perform a range of functions. Expected final online publication date for the Annual Review of Materials Research, Volume 52 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"27 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1146/annurev-matsci-081720-124041","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

This review focuses on the properties of reactive materials (RMs) that enable exothermic formation reactions and their application as local heat sources. We examine how the heat produced by these formation reactions can enable a range of useful functions including bonding, sealing, ignition, signaling, and built-in degradation. We begin by describing the chemistries, geometries, microstructures, and fabrication of RMs. We then explore the magnitude and measurement of their stored chemical energies and the rates and mechanisms by which the stored energy can be released to generate useful heat. The majority of the review focuses on how the released heat can be modeled and used to perform a range of functions. Expected final online publication date for the Annual Review of Materials Research, Volume 52 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为局部热源的放热生成反应
本文综述了能够进行放热生成反应的活性材料的性质及其作为局部热源的应用。我们研究了这些形成反应产生的热量如何能够实现一系列有用的功能,包括粘合、密封、点火、信号传导和内置降解。我们开始描述化学,几何形状,微观结构,和制造的rm。然后,我们探讨了它们储存的化学能的大小和测量,以及储存的能量可以被释放以产生有用热的速率和机制。大部分评论集中在如何对释放的热量进行建模并用于执行一系列功能。预计《材料研究年度评论》第52卷的最终在线出版日期为2022年7月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Materials Research
Annual Review of Materials Research 工程技术-材料科学:综合
CiteScore
17.70
自引率
1.00%
发文量
21
期刊介绍: The Annual Review of Materials Research, published since 1971, is a journal that covers significant developments in the field of materials research. It includes original methodologies, materials phenomena, material systems, and special keynote topics. The current volume of the journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The journal defines its scope as encompassing significant developments in materials science, including methodologies for studying materials and materials phenomena. It is indexed and abstracted in various databases, such as Scopus, Science Citation Index Expanded, Civil Engineering Abstracts, INSPEC, and Academic Search, among others.
期刊最新文献
Chemical Botany: Bottlebrush Polymers in Materials Science Circular Steel for Fast Decarbonization: Thermodynamics, Kinetics, and Microstructure Behind Upcycling Scrap into High-Performance Sheet Steel Structural Chirality and Electronic Chirality in Quantum Materials Degradation Processes in Current Commercialized Li-Ion Batteries and Strategies to Mitigate Them Oxygen Redox in Alkali-Ion Battery Cathodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1