Alexandros Daglis, Stanko Novakovic, Edouard Bugnion, B. Falsafi, Boris Grot
{"title":"Manycore Network Interfaces for in-memory rack-scale computing","authors":"Alexandros Daglis, Stanko Novakovic, Edouard Bugnion, B. Falsafi, Boris Grot","doi":"10.1145/2749469.2750415","DOIUrl":null,"url":null,"abstract":"Datacenter operators rely on low-cost, high-density technologies to maximize throughput for data-intensive services with tight tail latencies. In-memory rack-scale computing is emerging as a promising paradigm in scale-out datacenters capitalizing on commodity SoCs, low-latency and high-bandwidth communication fabrics and a remote memory access model to enable aggregation of a rack's memory for critical data-intensive applications such as graph processing or key-value stores. Low latency and high bandwidth not only dictate eliminating communication bottlenecks in the software protocols and off-chip fabrics but also a careful on-chip integration of network interfaces. The latter is a key challenge especially in architectures with RDMA-inspired one-sided operations that aim to achieve low latency and high bandwidth through on-chip Network Interface (NI) support. This paper proposes and evaluates network interface architectures for tiled manycore SoCs for in-memory rack-scale computing. Our results indicate that a careful splitting of NI functionality per chip tile and at the chip's edge along a NOC dimension enables a rack-scale architecture to optimize for both latency and bandwidth. Our best manycore NI architecture achieves latencies within 3% of an idealized hardware NUMA and efficiently uses the full bisection bandwidth of the NOC, without changing the on-chip coherence protocol or the core's microarchitecture.","PeriodicalId":6878,"journal":{"name":"2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA)","volume":"11 2 1","pages":"567-579"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2749469.2750415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
Datacenter operators rely on low-cost, high-density technologies to maximize throughput for data-intensive services with tight tail latencies. In-memory rack-scale computing is emerging as a promising paradigm in scale-out datacenters capitalizing on commodity SoCs, low-latency and high-bandwidth communication fabrics and a remote memory access model to enable aggregation of a rack's memory for critical data-intensive applications such as graph processing or key-value stores. Low latency and high bandwidth not only dictate eliminating communication bottlenecks in the software protocols and off-chip fabrics but also a careful on-chip integration of network interfaces. The latter is a key challenge especially in architectures with RDMA-inspired one-sided operations that aim to achieve low latency and high bandwidth through on-chip Network Interface (NI) support. This paper proposes and evaluates network interface architectures for tiled manycore SoCs for in-memory rack-scale computing. Our results indicate that a careful splitting of NI functionality per chip tile and at the chip's edge along a NOC dimension enables a rack-scale architecture to optimize for both latency and bandwidth. Our best manycore NI architecture achieves latencies within 3% of an idealized hardware NUMA and efficiently uses the full bisection bandwidth of the NOC, without changing the on-chip coherence protocol or the core's microarchitecture.