Lucy H. Waldren, L. A. Livingston, Florence Y N Leung, Punit Shah
{"title":"Using network analysis to improve understanding and utility of the 10-item Autism-Spectrum Quotient","authors":"Lucy H. Waldren, L. A. Livingston, Florence Y N Leung, Punit Shah","doi":"10.1017/exp.2022.7","DOIUrl":null,"url":null,"abstract":"Abstract The 10-item Autism-Spectrum Quotient (AQ10) is a measure of autistic traits used in research and clinical practice. Recently, the AQ10 has garnered critical attention, with research questioning its psychometric properties and clinical cutoff value. To help inform the utility of the measure, we conducted the first network analysis of the AQ10, with a view to gain a better understanding of its individual items. Using a large dataset of 6,595 participants who had completed the AQ10, we found strongest inter-subscale connections between communication, imagination, and socially relevant items. The nodes with greatest centrality concerned theory of mind differences. Together, these findings align with cognitive explanations of autism and provide clues about which AQ10 items show greatest utility for informing autism-related clinical practice.","PeriodicalId":12269,"journal":{"name":"Experimental Results","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Results","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/exp.2022.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract The 10-item Autism-Spectrum Quotient (AQ10) is a measure of autistic traits used in research and clinical practice. Recently, the AQ10 has garnered critical attention, with research questioning its psychometric properties and clinical cutoff value. To help inform the utility of the measure, we conducted the first network analysis of the AQ10, with a view to gain a better understanding of its individual items. Using a large dataset of 6,595 participants who had completed the AQ10, we found strongest inter-subscale connections between communication, imagination, and socially relevant items. The nodes with greatest centrality concerned theory of mind differences. Together, these findings align with cognitive explanations of autism and provide clues about which AQ10 items show greatest utility for informing autism-related clinical practice.