{"title":"A Stochastic Optimization Model for Carbon-Emission Reduction Investment and Sustainable Energy Planning under Cost-Risk Control","authors":"L. Ji, G. Huang, D. Niu, Y. Cai, J. Yin","doi":"10.3808/jei.202000428","DOIUrl":null,"url":null,"abstract":"Restricted by conventional energy resources and environmental space, the sustainable development of urban power sector faces enormous challenges. Renewable energy generation and carbon capture and storage (CCS) are attractive technologies for reducing conventional energy resource consumption and improving CO2 emission mitigation. Considering the limitation of expensive investment cost on their wide application, a stochastic optimization model for the optimal design and operation strategy of regional electric power system is proposed to achieve conventional resource-consumption reduction and CO2 emission mitigation under cost-risk control. The hybrid method integrates interval two-stage stochastic programming with downside risk theory. It can not only effectively deal with the complex uncertainties expressed as discrete intervals and probability distribution, but also help decision-makers make cost-risk tradeoff under predetermined budget. The proposed model is applied in the electric power system planning of Zhejiang Province, an economically developed area with limited fossil energy resources. The influences of different resource and environmental policies on the investment portfolio and power system operation are analyzed and discussed under various scenarios. The results indicated that different policies would lead to different generation technology portfolios. The aggressive CO2 emission reduction policy could stimulate the development of CCS technology, and the electric power system would still heavily rely on coal resource, while the tough coal-consumption control policy could directly promote regional renewable energy development and electric power structure adjustment.","PeriodicalId":54840,"journal":{"name":"Journal of Environmental Informatics","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2020-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3808/jei.202000428","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 55
Abstract
Restricted by conventional energy resources and environmental space, the sustainable development of urban power sector faces enormous challenges. Renewable energy generation and carbon capture and storage (CCS) are attractive technologies for reducing conventional energy resource consumption and improving CO2 emission mitigation. Considering the limitation of expensive investment cost on their wide application, a stochastic optimization model for the optimal design and operation strategy of regional electric power system is proposed to achieve conventional resource-consumption reduction and CO2 emission mitigation under cost-risk control. The hybrid method integrates interval two-stage stochastic programming with downside risk theory. It can not only effectively deal with the complex uncertainties expressed as discrete intervals and probability distribution, but also help decision-makers make cost-risk tradeoff under predetermined budget. The proposed model is applied in the electric power system planning of Zhejiang Province, an economically developed area with limited fossil energy resources. The influences of different resource and environmental policies on the investment portfolio and power system operation are analyzed and discussed under various scenarios. The results indicated that different policies would lead to different generation technology portfolios. The aggressive CO2 emission reduction policy could stimulate the development of CCS technology, and the electric power system would still heavily rely on coal resource, while the tough coal-consumption control policy could directly promote regional renewable energy development and electric power structure adjustment.
期刊介绍:
Journal of Environmental Informatics (JEI) is an international, peer-reviewed, and interdisciplinary publication designed to foster research innovation and discovery on basic science and information technology for addressing various environmental problems. The journal aims to motivate and enhance the integration of science and technology to help develop sustainable solutions that are consensus-oriented, risk-informed, scientifically-based and cost-effective. JEI serves researchers, educators and practitioners who are interested in theoretical and/or applied aspects of environmental science, regardless of disciplinary boundaries. The topics addressed by the journal include:
- Planning of energy, environmental and ecological management systems
- Simulation, optimization and Environmental decision support
- Environmental geomatics - GIS, RS and other spatial information technologies
- Informatics for environmental chemistry and biochemistry
- Environmental applications of functional materials
- Environmental phenomena at atomic, molecular and macromolecular scales
- Modeling of chemical, biological and environmental processes
- Modeling of biotechnological systems for enhanced pollution mitigation
- Computer graphics and visualization for environmental decision support
- Artificial intelligence and expert systems for environmental applications
- Environmental statistics and risk analysis
- Climate modeling, downscaling, impact assessment, and adaptation planning
- Other areas of environmental systems science and information technology.