Min Yang, M. Kong, Changhe Li, Yunze Long, Yanbin Zhang, Shubham Sharma, Runze Li, Teng Gao, Mingzheng Liu, Xin Cui, Xiaoming Wang, Xiao Ma, Yuying Yang
{"title":"Temperature field model in surface grinding: a comparative assessment","authors":"Min Yang, M. Kong, Changhe Li, Yunze Long, Yanbin Zhang, Shubham Sharma, Runze Li, Teng Gao, Mingzheng Liu, Xin Cui, Xiaoming Wang, Xiao Ma, Yuying Yang","doi":"10.1088/2631-7990/acf4d4","DOIUrl":null,"url":null,"abstract":"Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality. However, a significant technical challenge in grinding is the potential increase in temperature due to high specific energy, which can lead to surface thermal damage. Therefore, ensuring control over the surface integrity of workpieces during grinding becomes a critical concern. This necessitates the development of temperature field models that consider various parameters, such as workpiece materials, grinding wheels, grinding parameters, cooling methods, and media, to guide industrial production. This study thoroughly analyzes and summarizes grinding temperature field models. First, the theory of the grinding temperature field is investigated, classifying it into traditional models based on a continuous belt heat source and those based on a discrete heat source, depending on whether the heat source is uniform and continuous. Through this examination, a more accurate grinding temperature model that closely aligns with practical grinding conditions is derived. Subsequently, various grinding thermal models are summarized, including models for the heat source distribution, energy distribution proportional coefficient, and convective heat transfer coefficient. Through comprehensive research, the most widely recognized, utilized, and accurate model for each category is identified. The application of these grinding thermal models is reviewed, shedding light on the governing laws that dictate the influence of the heat source distribution, heat distribution, and convective heat transfer in the grinding arc zone on the grinding temperature field. Finally, considering the current issues in the field of grinding temperature, potential future research directions are proposed. The aim of this study is to provide theoretical guidance and technical support for predicting workpiece temperature and improving surface integrity.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"1 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acf4d4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 7
Abstract
Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality. However, a significant technical challenge in grinding is the potential increase in temperature due to high specific energy, which can lead to surface thermal damage. Therefore, ensuring control over the surface integrity of workpieces during grinding becomes a critical concern. This necessitates the development of temperature field models that consider various parameters, such as workpiece materials, grinding wheels, grinding parameters, cooling methods, and media, to guide industrial production. This study thoroughly analyzes and summarizes grinding temperature field models. First, the theory of the grinding temperature field is investigated, classifying it into traditional models based on a continuous belt heat source and those based on a discrete heat source, depending on whether the heat source is uniform and continuous. Through this examination, a more accurate grinding temperature model that closely aligns with practical grinding conditions is derived. Subsequently, various grinding thermal models are summarized, including models for the heat source distribution, energy distribution proportional coefficient, and convective heat transfer coefficient. Through comprehensive research, the most widely recognized, utilized, and accurate model for each category is identified. The application of these grinding thermal models is reviewed, shedding light on the governing laws that dictate the influence of the heat source distribution, heat distribution, and convective heat transfer in the grinding arc zone on the grinding temperature field. Finally, considering the current issues in the field of grinding temperature, potential future research directions are proposed. The aim of this study is to provide theoretical guidance and technical support for predicting workpiece temperature and improving surface integrity.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.