Temperature field model in surface grinding: a comparative assessment

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2023-08-29 DOI:10.1088/2631-7990/acf4d4
Min Yang, M. Kong, Changhe Li, Yunze Long, Yanbin Zhang, Shubham Sharma, Runze Li, Teng Gao, Mingzheng Liu, Xin Cui, Xiaoming Wang, Xiao Ma, Yuying Yang
{"title":"Temperature field model in surface grinding: a comparative assessment","authors":"Min Yang, M. Kong, Changhe Li, Yunze Long, Yanbin Zhang, Shubham Sharma, Runze Li, Teng Gao, Mingzheng Liu, Xin Cui, Xiaoming Wang, Xiao Ma, Yuying Yang","doi":"10.1088/2631-7990/acf4d4","DOIUrl":null,"url":null,"abstract":"Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality. However, a significant technical challenge in grinding is the potential increase in temperature due to high specific energy, which can lead to surface thermal damage. Therefore, ensuring control over the surface integrity of workpieces during grinding becomes a critical concern. This necessitates the development of temperature field models that consider various parameters, such as workpiece materials, grinding wheels, grinding parameters, cooling methods, and media, to guide industrial production. This study thoroughly analyzes and summarizes grinding temperature field models. First, the theory of the grinding temperature field is investigated, classifying it into traditional models based on a continuous belt heat source and those based on a discrete heat source, depending on whether the heat source is uniform and continuous. Through this examination, a more accurate grinding temperature model that closely aligns with practical grinding conditions is derived. Subsequently, various grinding thermal models are summarized, including models for the heat source distribution, energy distribution proportional coefficient, and convective heat transfer coefficient. Through comprehensive research, the most widely recognized, utilized, and accurate model for each category is identified. The application of these grinding thermal models is reviewed, shedding light on the governing laws that dictate the influence of the heat source distribution, heat distribution, and convective heat transfer in the grinding arc zone on the grinding temperature field. Finally, considering the current issues in the field of grinding temperature, potential future research directions are proposed. The aim of this study is to provide theoretical guidance and technical support for predicting workpiece temperature and improving surface integrity.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"1 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acf4d4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 7

Abstract

Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality. However, a significant technical challenge in grinding is the potential increase in temperature due to high specific energy, which can lead to surface thermal damage. Therefore, ensuring control over the surface integrity of workpieces during grinding becomes a critical concern. This necessitates the development of temperature field models that consider various parameters, such as workpiece materials, grinding wheels, grinding parameters, cooling methods, and media, to guide industrial production. This study thoroughly analyzes and summarizes grinding temperature field models. First, the theory of the grinding temperature field is investigated, classifying it into traditional models based on a continuous belt heat source and those based on a discrete heat source, depending on whether the heat source is uniform and continuous. Through this examination, a more accurate grinding temperature model that closely aligns with practical grinding conditions is derived. Subsequently, various grinding thermal models are summarized, including models for the heat source distribution, energy distribution proportional coefficient, and convective heat transfer coefficient. Through comprehensive research, the most widely recognized, utilized, and accurate model for each category is identified. The application of these grinding thermal models is reviewed, shedding light on the governing laws that dictate the influence of the heat source distribution, heat distribution, and convective heat transfer in the grinding arc zone on the grinding temperature field. Finally, considering the current issues in the field of grinding temperature, potential future research directions are proposed. The aim of this study is to provide theoretical guidance and technical support for predicting workpiece temperature and improving surface integrity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表面磨削温度场模型的比较评价
磨削是工件加工中的一个关键工序,它对工件的精度和表面质量起着至关重要的作用。然而,磨削的一个重大技术挑战是由于高比能可能导致温度升高,这可能导致表面热损伤。因此,确保在磨削过程中对工件表面完整性的控制成为一个关键问题。这就需要开发考虑工件材料、砂轮、磨削参数、冷却方法和介质等各种参数的温度场模型,以指导工业生产。本文对磨削温度场模型进行了深入的分析和总结。首先,研究了磨削温度场的理论,根据热源是否均匀连续,将其分为基于连续带热源的传统模型和基于离散带热源的模型。通过这一检验,导出了一个更精确的、与实际磨削条件更接近的磨削温度模型。随后,总结了各种磨削热模型,包括热源分布模型、能量分布比例系数模型和对流换热系数模型。通过综合研究,确定每个类别最被广泛认可、使用和准确的模型。综述了这些磨削热模型的应用,揭示了磨削弧区的热源分布、热分布和对流换热对磨削温度场影响的规律。最后,结合磨削温度领域目前存在的问题,提出了今后可能的研究方向。研究的目的是为预测工件温度和提高表面完整性提供理论指导和技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants. A novel approach of jet polishing for interior surface of small grooved components using three developed setups Elliptical vibration chiseling: a novel process for texturing ultra-high-aspect-ratio microstructures on the metallic surface Printability disparities in heterogeneous material combinations via laser directed energy deposition: a comparative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1