Another look at halfspace depth: flag halfspaces with applications

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Journal of Nonparametric Statistics Pub Date : 2022-09-23 DOI:10.1080/10485252.2023.2236721
Duvsan Pokorn'y, P. Laketa, Stanislav Nagy
{"title":"Another look at halfspace depth: flag halfspaces with applications","authors":"Duvsan Pokorn'y, P. Laketa, Stanislav Nagy","doi":"10.1080/10485252.2023.2236721","DOIUrl":null,"url":null,"abstract":"The halfspace depth is a well studied tool of nonparametric statistics in multivariate spaces, naturally inducing a multivariate generalisation of quantiles. The halfspace depth of a point with respect to a measure is defined as the infimum mass of closed halfspaces that contain the given point. In general, a closed halfspace that attains that infimum does not have to exist. We introduce a flag halfspace - an intermediary between a closed halfspace and its interior. We demonstrate that the halfspace depth can be equivalently formulated also in terms of flag halfspaces, and that there always exists a flag halfspace whose boundary passes through any given point $x$, and has mass exactly equal to the halfspace depth of $x$. Flag halfspaces allow us to derive theoretical results regarding the halfspace depth without the need to differentiate absolutely continuous measures from measures containing atoms, as was frequently done previously. The notion of flag halfspaces is used to state results on the dimensionality of the halfspace median set for random samples. We prove that under mild conditions, the dimension of the sample halfspace median set of $d$-variate data cannot be $d-1$, and that for $d=2$ the sample halfspace median set must be either a two-dimensional convex polygon, or a data point. The latter result guarantees that the computational algorithm for the sample halfspace median form the R package TukeyRegion is exact also in the case when the median set is less-than-full-dimensional in dimension $d=2$.","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"31 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2023.2236721","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

The halfspace depth is a well studied tool of nonparametric statistics in multivariate spaces, naturally inducing a multivariate generalisation of quantiles. The halfspace depth of a point with respect to a measure is defined as the infimum mass of closed halfspaces that contain the given point. In general, a closed halfspace that attains that infimum does not have to exist. We introduce a flag halfspace - an intermediary between a closed halfspace and its interior. We demonstrate that the halfspace depth can be equivalently formulated also in terms of flag halfspaces, and that there always exists a flag halfspace whose boundary passes through any given point $x$, and has mass exactly equal to the halfspace depth of $x$. Flag halfspaces allow us to derive theoretical results regarding the halfspace depth without the need to differentiate absolutely continuous measures from measures containing atoms, as was frequently done previously. The notion of flag halfspaces is used to state results on the dimensionality of the halfspace median set for random samples. We prove that under mild conditions, the dimension of the sample halfspace median set of $d$-variate data cannot be $d-1$, and that for $d=2$ the sample halfspace median set must be either a two-dimensional convex polygon, or a data point. The latter result guarantees that the computational algorithm for the sample halfspace median form the R package TukeyRegion is exact also in the case when the median set is less-than-full-dimensional in dimension $d=2$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
另一个关于半空间深度的研究:在应用程序中标记半空间
半空间深度是多元空间中非参数统计的一个很好的研究工具,自然会引起分位数的多元推广。点相对于测量的半空间深度定义为包含给定点的封闭半空间的最小质量。一般来说,达到这个极限的封闭半空间并不一定存在。我们引入了一个标志半空间——一个封闭半空间与其内部之间的中介。我们证明了半空间深度也可以等价地用标志半空间表示,并且总是存在一个标志半空间,其边界经过任意给定的点$x$,其质量正好等于$x$的半空间深度。Flag半空间允许我们得出关于半空间深度的理论结果,而不需要区分绝对连续的测量和包含原子的测量,就像以前经常做的那样。标志半空间的概念用于描述随机样本的半空间中位数集维数的结果。我们证明了在温和条件下,$d$变量数据的样本半空间中位数集的维数不能为$d-1$,并且对于$d=2$,样本半空间中位数集必须是一个二维凸多边形,或者是一个数据点。后一个结果保证了R包TukeyRegion的样本半空间中位数的计算算法在维数$d=2$中位数集小于全维的情况下也是精确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nonparametric Statistics
Journal of Nonparametric Statistics 数学-统计学与概率论
CiteScore
1.50
自引率
8.30%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics: Nonparametric modeling, Nonparametric function estimation, Rank and other robust and distribution-free procedures, Resampling methods, Lack-of-fit testing, Multivariate analysis, Inference with high-dimensional data, Dimension reduction and variable selection, Methods for errors in variables, missing, censored, and other incomplete data structures, Inference of stochastic processes, Sample surveys, Time series analysis, Longitudinal and functional data analysis, Nonparametric Bayes methods and decision procedures, Semiparametric models and procedures, Statistical methods for imaging and tomography, Statistical inverse problems, Financial statistics and econometrics, Bioinformatics and comparative genomics, Statistical algorithms and machine learning. Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order. Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.
期刊最新文献
Adaptive and efficient isotonic estimation in Wicksell's problem A general semi-parametric elliptical distribution model for semi-supervised learning Stone's theorem for distributional regression in Wasserstein distance Kernel density estimation for a stochastic process with values in a Riemannian manifold Functional index coefficient models for locally stationary time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1