Software Effort Estimation through Ensembling of Base Models in Machine Learning using a Voting Estimator

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI:10.14569/ijacsa.2023.0140222
Beesetti Kiran Kumar, Saurabh Bilgaiyan, B. Mishra
{"title":"Software Effort Estimation through Ensembling of Base Models in Machine Learning using a Voting Estimator","authors":"Beesetti Kiran Kumar, Saurabh Bilgaiyan, B. Mishra","doi":"10.14569/ijacsa.2023.0140222","DOIUrl":null,"url":null,"abstract":"—For a long time, researchers have been working to predict the effort of software development with the help of various machine learning algorithms. These algorithms are known for better understanding the underlying facts inside the data and improving the prediction rate than conventional approaches such as line of code and functional point approaches. According to no free lunch theory, there is no single algorithm which gives better predictions on all the datasets. To remove this bias our work aims to provide a better model for software effort estimation and thereby reduce the distance between the actual and predicted effort for future projects. The authors proposed an ensembling of regressor models using voting estimator for better predictions to reduce the error rate to over the biasness provide by single machine learning algorithm. The results obtained show that the ensemble models were better than those from the single models used on different datasets.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"21 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

—For a long time, researchers have been working to predict the effort of software development with the help of various machine learning algorithms. These algorithms are known for better understanding the underlying facts inside the data and improving the prediction rate than conventional approaches such as line of code and functional point approaches. According to no free lunch theory, there is no single algorithm which gives better predictions on all the datasets. To remove this bias our work aims to provide a better model for software effort estimation and thereby reduce the distance between the actual and predicted effort for future projects. The authors proposed an ensembling of regressor models using voting estimator for better predictions to reduce the error rate to over the biasness provide by single machine learning algorithm. The results obtained show that the ensemble models were better than those from the single models used on different datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于投票估计器的机器学习基本模型集成的软件工作量估计
长期以来,研究人员一直致力于在各种机器学习算法的帮助下预测软件开发的工作量。与代码行和功能点方法等传统方法相比,这些算法以更好地理解数据中的潜在事实和提高预测率而闻名。根据没有免费的午餐理论,没有一种算法能在所有数据集上给出更好的预测。为了消除这种偏见,我们的工作旨在为软件工作量估计提供一个更好的模型,从而减少未来项目的实际工作量和预测工作量之间的距离。作者提出了一种使用投票估计器的回归模型集成,以更好地预测,以减少错误率,超过单一机器学习算法提供的偏差。结果表明,在不同的数据集上,集成模型优于单一模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
期刊最新文献
Comparison of K-Nearest Neighbor, Naive Bayes Classifier, Decision Tree, and Logistic Regression in Classification of Non-Performing Financing Simulation of fire exposure behavior to building structural elements using LISA FEA V.8. An Exploration into Hybrid Agile Development Approach A Study on Sentiment Analysis Techniques of Twitter Data Handwriting Recognition using Artificial Intelligence Neural Network and Image Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1