Zlata Fedorova, C. Dauer, A. Sidorenko, S. Eggert, Johann Kroha, S. Linden
{"title":"Dissipation engineered directional filter for quantum ratchets","authors":"Zlata Fedorova, C. Dauer, A. Sidorenko, S. Eggert, Johann Kroha, S. Linden","doi":"10.1103/PHYSREVRESEARCH.3.013260","DOIUrl":null,"url":null,"abstract":"We demonstrate transport rectification in a hermitian Hamiltonian quantum ratchet by a dissipative, dynamic impurity. While the bulk of the ratchet supports transport in both directions, the properly designed loss function of the local impurity acts as a direction-dependent filter for the moving states. We analyse this scheme theoretically by making use of Floquet-S-Matrix theory. In addition, we provide the direct experimental observation of one-way transmittance in periodically modulated plasmonic waveguide arrays containing a local impurity with engineered losses.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.013260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We demonstrate transport rectification in a hermitian Hamiltonian quantum ratchet by a dissipative, dynamic impurity. While the bulk of the ratchet supports transport in both directions, the properly designed loss function of the local impurity acts as a direction-dependent filter for the moving states. We analyse this scheme theoretically by making use of Floquet-S-Matrix theory. In addition, we provide the direct experimental observation of one-way transmittance in periodically modulated plasmonic waveguide arrays containing a local impurity with engineered losses.