Reconfigurable Training, Vortex Writing and Spin-Wave Fingerprinting in an Artificial Spin-Vortex Ice

J. Gartside, K. Stenning, A. Vanstone, T. Dion, Holly H. Holder, D. Arroo, H. Kurebayashi, W. Branford
{"title":"Reconfigurable Training, Vortex Writing and Spin-Wave Fingerprinting in an Artificial Spin-Vortex Ice","authors":"J. Gartside, K. Stenning, A. Vanstone, T. Dion, Holly H. Holder, D. Arroo, H. Kurebayashi, W. Branford","doi":"10.21203/RS.3.RS-736619/V1","DOIUrl":null,"url":null,"abstract":"\n Strongly-interacting artificial spin systems are moving beyond mimicking naturally-occurring materials to find roles as versatile functional platforms, from reconfigurable magnonics to designer magnetic metamaterials. Typically artificial spin systems comprise nanomagnets with a single magnetisation texture: collinear macrospins or chiral vortices. By tuning nanoarray dimensions we achieve macrospin/vortex bistability and demonstrate a four-state metamaterial spin-system ‘Artificial Spin-Vortex Ice’ (ASVI). ASVI is capable of adopting Ising-like macrospins with strong ice-like vertex interactions, in addition to weakly-coupled vortices with low stray dipolar-field. The enhanced bi-texture microstate space gives rise to emergent physical memory phenomena, with ratchet-like vortex training and history-dependent nonlinear training dynamics. We observe vortex-domain formation alongside MFM tip vortex-writing. Tip-written vortices dramatically alter local reversal and memory dynamics. Vortices and macrospins exhibit starkly-differing spin-wave spectra with analogue-style mode-amplitude control via vortex training and mode-frequency shifts of ∆f = 3.8 GHz. We leverage spin-wave ‘spectral fingerprinting’ for rapid, scaleable readout of vortex and macrospin populations over complex training-protocols with applicability for functional magnonics and physical memory.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-736619/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Strongly-interacting artificial spin systems are moving beyond mimicking naturally-occurring materials to find roles as versatile functional platforms, from reconfigurable magnonics to designer magnetic metamaterials. Typically artificial spin systems comprise nanomagnets with a single magnetisation texture: collinear macrospins or chiral vortices. By tuning nanoarray dimensions we achieve macrospin/vortex bistability and demonstrate a four-state metamaterial spin-system ‘Artificial Spin-Vortex Ice’ (ASVI). ASVI is capable of adopting Ising-like macrospins with strong ice-like vertex interactions, in addition to weakly-coupled vortices with low stray dipolar-field. The enhanced bi-texture microstate space gives rise to emergent physical memory phenomena, with ratchet-like vortex training and history-dependent nonlinear training dynamics. We observe vortex-domain formation alongside MFM tip vortex-writing. Tip-written vortices dramatically alter local reversal and memory dynamics. Vortices and macrospins exhibit starkly-differing spin-wave spectra with analogue-style mode-amplitude control via vortex training and mode-frequency shifts of ∆f = 3.8 GHz. We leverage spin-wave ‘spectral fingerprinting’ for rapid, scaleable readout of vortex and macrospin populations over complex training-protocols with applicability for functional magnonics and physical memory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工自旋冰的可重构训练、涡旋书写和自旋波指纹识别
强相互作用的人工自旋系统正在超越模仿自然发生的材料,从可重构的磁学到设计的磁性超材料,都在寻找多功能功能平台的角色。典型的人工自旋系统包括具有单一磁化结构的纳米磁体:共线大自旋或手性涡旋。通过调整纳米阵列的尺寸,我们实现了宏观自旋/涡旋双稳定,并展示了一种四态超材料自旋系统“人工自旋-涡旋冰”(ASVI)。ASVI除了具有低杂散偶极场的弱耦合涡旋外,还可以采用具有强冰状顶点相互作用的类伊辛大自旋。增强的双织构微态空间具有棘轮状涡旋训练和依赖历史的非线性训练动力学,产生了涌现的物理记忆现象。我们观察到涡域形成与MFM尖端涡写入。Tip-written旋涡戏剧性地改变了局部反转和记忆动态。旋涡和大自旋表现出明显不同的自旋波谱,通过旋涡训练和模式频率移位(f = 3.8 GHz)进行模拟式模式振幅控制。我们利用自旋波“光谱指纹”快速,可扩展的涡旋和大自旋种群的读出复杂的训练协议,适用于功能磁振学和物理记忆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A driven fractal network: Possible route to efficient thermoelectric application Double Electron Spin Resonance of Engineered Atomic Structures on a Surface Reconfigurable Training, Vortex Writing and Spin-Wave Fingerprinting in an Artificial Spin-Vortex Ice Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Observation of electrically tunable Feshbach resonances in twisted bilayer semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1