Bench4BL: reproducibility study on the performance of IR-based bug localization

Jaekwon Lee, Dongsun Kim, Tegawendé F. Bissyandé, Woosung Jung, Yves Le Traon
{"title":"Bench4BL: reproducibility study on the performance of IR-based bug localization","authors":"Jaekwon Lee, Dongsun Kim, Tegawendé F. Bissyandé, Woosung Jung, Yves Le Traon","doi":"10.1145/3213846.3213856","DOIUrl":null,"url":null,"abstract":"In recent years, the use of Information Retrieval (IR) techniques to automate the localization of buggy files, given a bug report, has shown promising results. The abundance of approaches in the literature, however, contrasts with the reality of IR-based bug localization (IRBL) adoption by developers (or even by the research community to complement other research approaches). Presumably, this situation is due to the lack of comprehensive evaluations for state-of-the-art approaches which offer insights into the actual performance of the techniques. We report on a comprehensive reproduction study of six state-of-the-art IRBL techniques. This study applies not only subjects used in existing studies (old subjects) but also 46 new subjects (61,431 Java files and 9,459 bug reports) to the IRBL techniques. In addition, the study compares two different version matching (between bug reports and source code files) strategies to highlight some observations related to performance deterioration. We also vary test file inclusion to investigate the effectiveness of IRBL techniques on test files, or its noise impact on performance. Finally, we assess potential performance gain if duplicate bug reports are leveraged.","PeriodicalId":20542,"journal":{"name":"Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3213846.3213856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

In recent years, the use of Information Retrieval (IR) techniques to automate the localization of buggy files, given a bug report, has shown promising results. The abundance of approaches in the literature, however, contrasts with the reality of IR-based bug localization (IRBL) adoption by developers (or even by the research community to complement other research approaches). Presumably, this situation is due to the lack of comprehensive evaluations for state-of-the-art approaches which offer insights into the actual performance of the techniques. We report on a comprehensive reproduction study of six state-of-the-art IRBL techniques. This study applies not only subjects used in existing studies (old subjects) but also 46 new subjects (61,431 Java files and 9,459 bug reports) to the IRBL techniques. In addition, the study compares two different version matching (between bug reports and source code files) strategies to highlight some observations related to performance deterioration. We also vary test file inclusion to investigate the effectiveness of IRBL techniques on test files, or its noise impact on performance. Finally, we assess potential performance gain if duplicate bug reports are leveraged.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bench4BL:基于ir的虫虫定位性能的可重复性研究
近年来,利用信息检索(Information Retrieval, IR)技术,在给出错误报告的情况下,自动定位错误文件,已经显示出良好的效果。然而,文献中丰富的方法与开发人员(甚至是研究社区为补充其他研究方法而采用的基于ir的错误定位(IRBL)的现实形成了鲜明对比。据推测,这种情况是由于缺乏对最先进的方法的全面评估,这些方法提供了对技术实际性能的见解。我们报告了六种最先进的IRBL技术的全面复制研究。本研究不仅将现有研究中使用的对象(旧对象)应用于IRBL技术,还将46个新对象(61431个Java文件和9459个bug报告)应用于IRBL技术。此外,该研究还比较了两种不同的版本匹配(在bug报告和源代码文件之间)策略,以突出一些与性能下降相关的观察结果。我们还改变了测试文件的包含,以研究IRBL技术对测试文件的有效性,或者它的噪声对性能的影响。最后,如果利用了重复的bug报告,我们将评估潜在的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LAND: a user-friendly and customizable test generation tool for Android apps Bench4BL: reproducibility study on the performance of IR-based bug localization Search-based detection of deviation failures in the migration of legacy spreadsheet applications Identifying implementation bugs in machine learning based image classifiers using metamorphic testing Tests from traces: automated unit test extraction for R
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1