{"title":"Inspecting Promotive Functions of Antimony Oxides for NH3-Assisted Selective Catalytic NOX Reduction","authors":"Seokhyun Lee, Jongsik Kim","doi":"10.31613/ceramist.2022.25.2.04","DOIUrl":null,"url":null,"abstract":"It is widely accepted that Sb oxide promotes redox cycling feature and SO<sub>2</sub> resistance of a catalyst utilized for selective catalytic NO<sub>X</sub> reduction (SCR) at low temperatures (≤300 ℃). However, promotive roles of Sb oxide have never been explored with the alteration of its crystal phases, which can be crucial to direct the overall acidic/redox characteristics and SCR performance of a catalyst along with its SO<sub>2</sub> tolerance. In this regard, while implementing TiO2-supported Mn oxide (Mn) as a model catalyst, we successfully isolated Sb<sub>2</sub>O<sub>3</sub> and Sb<sub>2</sub>O<sub>5</sub> on Mn using wet impregnation and precipitation protocols, leading to produce Mn-Sb-I and Mn- Sb-P, respectively. The resulting catalysts were verified to have comparable acidic properties, yet, exhibit distinct redox traits, as evidenced by the greatest quantity of labile oxygens for Mn-Sb-I (Sb<sub>2</sub>O<sub>3</sub>) compared to Mn and Mn-Sb-P (Sb<sub>2</sub>O<sub>5</sub>). This leads to significant enhancement of SCR performance and SO<sub>2</sub> resistance for Mn-Sb-I over the others.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":"306 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31613/ceramist.2022.25.2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
It is widely accepted that Sb oxide promotes redox cycling feature and SO2 resistance of a catalyst utilized for selective catalytic NOX reduction (SCR) at low temperatures (≤300 ℃). However, promotive roles of Sb oxide have never been explored with the alteration of its crystal phases, which can be crucial to direct the overall acidic/redox characteristics and SCR performance of a catalyst along with its SO2 tolerance. In this regard, while implementing TiO2-supported Mn oxide (Mn) as a model catalyst, we successfully isolated Sb2O3 and Sb2O5 on Mn using wet impregnation and precipitation protocols, leading to produce Mn-Sb-I and Mn- Sb-P, respectively. The resulting catalysts were verified to have comparable acidic properties, yet, exhibit distinct redox traits, as evidenced by the greatest quantity of labile oxygens for Mn-Sb-I (Sb2O3) compared to Mn and Mn-Sb-P (Sb2O5). This leads to significant enhancement of SCR performance and SO2 resistance for Mn-Sb-I over the others.