Research Trends on the Influence of Oxygen Vacancies in Post BaTiO3 (BT) Ceramics for Next-Generation MLCCs

I. Seo, Ka-young Lee, Cheol-Min Oh, Hyoung-Won Kang
{"title":"Research Trends on the Influence of Oxygen Vacancies in Post BaTiO3 (BT) Ceramics for Next-Generation MLCCs","authors":"I. Seo, Ka-young Lee, Cheol-Min Oh, Hyoung-Won Kang","doi":"10.31613/ceramist.2023.26.2.02","DOIUrl":null,"url":null,"abstract":"In line with the trend towards electrification in mobility, there is a demand for the development of next-generation Multilayer Ceramic Capacitors(MLCCs) with superior properties compared to those using the conventional BaTiO3 (BT) ceramics. For this, various high-performing ferroelectric ceramics have been proposed as post-BT materials, and numerous studies have been conducted on the role of oxygen vacancies within these materials. It has been confirmed that oxygen vacancies in the ceramic material have a significant impact on various properties such as oxygen ionic conduction, IR degradation, microstructure, aging degradation, and hardening effect, and by controlling the concentration and mobility of oxygen vacancies, it is possible to adjust these properties. We hope that research on the role of oxygen vacancies in various high-performing ferroelectric ceramics will be utilized as a foundation of knowledge for the development of next-generation MLCCs in the future.","PeriodicalId":9738,"journal":{"name":"Ceramist","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31613/ceramist.2023.26.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In line with the trend towards electrification in mobility, there is a demand for the development of next-generation Multilayer Ceramic Capacitors(MLCCs) with superior properties compared to those using the conventional BaTiO3 (BT) ceramics. For this, various high-performing ferroelectric ceramics have been proposed as post-BT materials, and numerous studies have been conducted on the role of oxygen vacancies within these materials. It has been confirmed that oxygen vacancies in the ceramic material have a significant impact on various properties such as oxygen ionic conduction, IR degradation, microstructure, aging degradation, and hardening effect, and by controlling the concentration and mobility of oxygen vacancies, it is possible to adjust these properties. We hope that research on the role of oxygen vacancies in various high-performing ferroelectric ceramics will be utilized as a foundation of knowledge for the development of next-generation MLCCs in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
后BaTiO3 (BT)陶瓷中氧空位对下一代mlcc影响的研究趋势
随着汽车电气化的趋势,与使用传统BaTiO3 (BT)陶瓷的电容器相比,下一代多层陶瓷电容器(mlcc)具有更优越的性能。为此,人们提出了各种高性能铁电陶瓷作为后bt材料,并对这些材料中氧空位的作用进行了大量研究。研究证实,氧空位对陶瓷材料的氧离子传导、红外降解、微观结构、老化降解和硬化效果等性能有显著影响,通过控制氧空位的浓度和迁移率,可以对这些性能进行调节。我们希望对氧空位在各种高性能铁电陶瓷中的作用的研究将作为未来开发下一代mlcc的知识基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Perspectives on the development of advanced lithium metal anode Short Review of Flash Sintering: Mechanisms, Microstructures, and Mechanical Properties Research Trends on the Influence of Oxygen Vacancies in Post BaTiO3 (BT) Ceramics for Next-Generation MLCCs Resent Progress of LiNi1-x-yCoxMnyO2 for Lithium-ion batteries Recent progress in all-solid-state Li-ion battery anodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1