Greedy modality selection via approximate submodular maximization

ArXiv Pub Date : 2022-10-22 DOI:10.48550/arXiv.2210.12562
Runxiang Cheng, Gargi Balasubramaniam, Yifei He, Yao-Hung Hubert Tsai, Han Zhao
{"title":"Greedy modality selection via approximate submodular maximization","authors":"Runxiang Cheng, Gargi Balasubramaniam, Yifei He, Yao-Hung Hubert Tsai, Han Zhao","doi":"10.48550/arXiv.2210.12562","DOIUrl":null,"url":null,"abstract":"Multimodal learning considers learning from multi-modality data, aiming to fuse heterogeneous sources of information. However, it is not always feasible to leverage all available modalities due to memory constraints. Further, training on all the modalities may be inefficient when redundant information exists within data, such as different subsets of modalities providing similar performance. In light of these challenges, we study modality selection, intending to efficiently select the most informative and complementary modalities under certain computational constraints. We formulate a theoretical framework for optimizing modality selection in multimodal learning and introduce a utility measure to quantify the benefit of selecting a modality. For this optimization problem, we present efficient algorithms when the utility measure exhibits monotonicity and approximate submodularity. We also connect the utility measure with existing Shapley-value-based feature importance scores. Last, we demonstrate the efficacy of our algorithm on synthetic (Patch-MNIST) and two real-world (PEMS-SF, CMU-MOSI) datasets.","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.12562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Multimodal learning considers learning from multi-modality data, aiming to fuse heterogeneous sources of information. However, it is not always feasible to leverage all available modalities due to memory constraints. Further, training on all the modalities may be inefficient when redundant information exists within data, such as different subsets of modalities providing similar performance. In light of these challenges, we study modality selection, intending to efficiently select the most informative and complementary modalities under certain computational constraints. We formulate a theoretical framework for optimizing modality selection in multimodal learning and introduce a utility measure to quantify the benefit of selecting a modality. For this optimization problem, we present efficient algorithms when the utility measure exhibits monotonicity and approximate submodularity. We also connect the utility measure with existing Shapley-value-based feature importance scores. Last, we demonstrate the efficacy of our algorithm on synthetic (Patch-MNIST) and two real-world (PEMS-SF, CMU-MOSI) datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贪心模态选择通过近似子模最大化
多模态学习考虑从多模态数据中学习,旨在融合异构信息源。然而,由于内存限制,利用所有可用的模式并不总是可行的。此外,当数据中存在冗余信息时,对所有模态的训练可能效率低下,例如模态的不同子集提供相似的性能。鉴于这些挑战,我们研究了模态选择,旨在在一定的计算约束下有效地选择最具信息量和互补的模态。我们制定了一个优化多模态学习中模态选择的理论框架,并引入了一个效用度量来量化选择模态的好处。对于这一优化问题,我们给出了当效用测度呈现单调性和近似子模性时的有效算法。我们还将效用度量与现有的基于shapley值的特征重要性分数联系起来。最后,我们证明了我们的算法在合成(Patch-MNIST)和两个现实世界(PEMS-SF, CMU-MOSI)数据集上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamical Mechanisms for Coordinating Long-term Working Memory Based on the Precision of Spike-timing in Cortical Neurons. Biomechanically Informed Image Registration for Patient-Specific Aortic Valve Strain Analysis. Fully 3D Unrolled Magnetic Resonance Fingerprinting Reconstruction via Staged Pretraining and Implicit Gridding. An open-source computational framework for immersed fluid-structure interaction modeling using FEBio and MFEM. A tissue-informed deep learning-based method for positron range correction in preclinical 68Ga PET imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1