S. Sui, Shuai Guo, D. Ma, C. Guo, Xiangquan Wu, Zhongmin Zhang, Chunjie Xu, D. Shechtman, S. Remennik, Daniel Safranchik, R. Lapovok
{"title":"Additive manufacturing of magnesium and its alloys: process-formability-microstructure-performance relationship and underlying mechanism","authors":"S. Sui, Shuai Guo, D. Ma, C. Guo, Xiangquan Wu, Zhongmin Zhang, Chunjie Xu, D. Shechtman, S. Remennik, Daniel Safranchik, R. Lapovok","doi":"10.1088/2631-7990/acf254","DOIUrl":null,"url":null,"abstract":"Magnesium and its alloys, as a promising class of materials, is popular in lightweight application and biomedical implants due to their low density and good biocompatibility. Additive manufacturing (AM) of Mg and its alloys is of growing interest in academia and industry. The domain-by-domain localized forming characteristics of AM leads to unique microstructures and performances of AM-process Mg and its alloys, which are different from those of traditionally manufactured counterparts. However, the intrinsic mechanisms still remain unclear and need to be in-depth explored. Therefore, this work aims to discuss and analyze the possible underlying mechanisms regarding defect appearance and elimination, microstructure formation and evolution, and performance improvement, based on presenting a comprehensive and systematic review on the relationship between process parameters, forming quality, microstructure characteristics and resultant performances. Lastly, some key perspectives requiring focus for further progression are highlighted to promote development of AM-processed Mg and its alloys and accelerate their industrialization.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"18 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/acf254","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1
Abstract
Magnesium and its alloys, as a promising class of materials, is popular in lightweight application and biomedical implants due to their low density and good biocompatibility. Additive manufacturing (AM) of Mg and its alloys is of growing interest in academia and industry. The domain-by-domain localized forming characteristics of AM leads to unique microstructures and performances of AM-process Mg and its alloys, which are different from those of traditionally manufactured counterparts. However, the intrinsic mechanisms still remain unclear and need to be in-depth explored. Therefore, this work aims to discuss and analyze the possible underlying mechanisms regarding defect appearance and elimination, microstructure formation and evolution, and performance improvement, based on presenting a comprehensive and systematic review on the relationship between process parameters, forming quality, microstructure characteristics and resultant performances. Lastly, some key perspectives requiring focus for further progression are highlighted to promote development of AM-processed Mg and its alloys and accelerate their industrialization.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.