{"title":"\"Canderoid\": A mobile system to remotely monitor travelling status of the elderly with dementia","authors":"B. Xiao, M. Asghar, T. Jamsa, P. Pulli","doi":"10.1109/ICAWST.2013.6765519","DOIUrl":null,"url":null,"abstract":"The number of elderly people increases quickly in many countries, under the global population aging situation. It is an upsetting fact that many elderly people are suffering from the dementia, which seriously obstructs their independent living and travel. It is a pervasive problem that the demented elderly individuals are easy to get lost or go into danger during alone travel in daily life. Therefore we propose a novel mobile system named \"Canderoid\" to monitor independent outdoor travel of the elderly individuals remotely, with aid from the caretaker. The system is composed mainly of an android terminal (Wanderoid), an MQTT broker, and a platform on caretaker side. In the system, an android terminal named \"Wanderoid\" is implemented on a smartphone to capture the travelling status, using built-in smartphone sensors (i.e. camera with an adhesive fish-eye lens, compass and GPS). The terminal device is a normal smartphone, with a fish-eye lens attached on the camera. The sensor data are transferred to the platform of caretaker after capturing. The data transmission work relies on a message pushing architecture, which deals with mobile IP address changing and enables remote manipulation of the smartphone terminal, by introducing the MQTT broker. Then the caretaker platform can interpret sensor data and real-timely present the travelling status using snapshot taken by the fish-eye camera, street view and map. A reliability test, energy dissipation test and usability test are carried out on the prototype to verify that the system is effective, easy-to-use, reliable and energy-saving, from the viewpoints of both technology and human factors.","PeriodicalId":68697,"journal":{"name":"炎黄地理","volume":"276 1","pages":"648-654"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"炎黄地理","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/ICAWST.2013.6765519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
The number of elderly people increases quickly in many countries, under the global population aging situation. It is an upsetting fact that many elderly people are suffering from the dementia, which seriously obstructs their independent living and travel. It is a pervasive problem that the demented elderly individuals are easy to get lost or go into danger during alone travel in daily life. Therefore we propose a novel mobile system named "Canderoid" to monitor independent outdoor travel of the elderly individuals remotely, with aid from the caretaker. The system is composed mainly of an android terminal (Wanderoid), an MQTT broker, and a platform on caretaker side. In the system, an android terminal named "Wanderoid" is implemented on a smartphone to capture the travelling status, using built-in smartphone sensors (i.e. camera with an adhesive fish-eye lens, compass and GPS). The terminal device is a normal smartphone, with a fish-eye lens attached on the camera. The sensor data are transferred to the platform of caretaker after capturing. The data transmission work relies on a message pushing architecture, which deals with mobile IP address changing and enables remote manipulation of the smartphone terminal, by introducing the MQTT broker. Then the caretaker platform can interpret sensor data and real-timely present the travelling status using snapshot taken by the fish-eye camera, street view and map. A reliability test, energy dissipation test and usability test are carried out on the prototype to verify that the system is effective, easy-to-use, reliable and energy-saving, from the viewpoints of both technology and human factors.