A. Bhuiyan, Lingyu Meng, Hsien-Lien Huang, C. Chae, Jinwoo Hwang, Hongping Zhao
{"title":"Al Incorporation up to 99% in Metalorganic Chemical Vapor Deposition‐Grown Monoclinic (AlxGa1–x)2O3 Films Using Trimethylgallium","authors":"A. Bhuiyan, Lingyu Meng, Hsien-Lien Huang, C. Chae, Jinwoo Hwang, Hongping Zhao","doi":"10.1002/pssr.202300224","DOIUrl":null,"url":null,"abstract":"Growths of monoclinic (AlxGa1−x)2O3 thin films up to 99% Al contents are demonstrated via metalorganic chemical vapor deposition (MOCVD) using trimethylgallium (TMGa) as the Ga precursor. The utilization of TMGa, rather than triethylgallium, enables a significant improvement of the growth rates (>2.5 μm h−1) of β‐(AlxGa1−x)2O3 thin films on (010), (100), and ( 2¯ 01) β‐Ga2O3 substrates. By systematically tuning the precursor molar flow rates, growth of coherently strained phase pure β‐(AlxGa1−x)2O3 films is demonstrated by comprehensive material characterizations via high‐resolution X‐ray diffraction (XRD) and atomic‐resolution scanning transmission electron microscopy (STEM) imaging. Monoclinic (AlxGa1−x)2O3 films with Al contents up to 99, 29, and 16% are achieved on (100), (010), and ( 2¯ 01) β‐Ga2O3 substrates, respectively. Beyond 29% of Al incorporation, the (010) (AlxGa1−x)2O3 films exhibit β‐ to γ‐phase segregation. β‐(AlxGa1−x)2O3 films grown on ( 2¯ 01) β‐Ga2O3 show local segregation of Al along (100) plane. Record‐high Al incorporations up to 99% in monoclinic (AlxGa1−x)2O3 grown on (100) Ga2O3 are confirmed from XRD, STEM, electron nanodiffraction, and X‐ray photoelectron spectroscopy measurements. These results indicate great promises of MOCVD development of β‐(AlxGa1−x)2O3 films and heterostructures with high Al content and growth rates using TMGa for next‐generation high‐power and high‐frequency electronic devices.","PeriodicalId":20059,"journal":{"name":"physica status solidi (RRL) – Rapid Research Letters","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (RRL) – Rapid Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssr.202300224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Growths of monoclinic (AlxGa1−x)2O3 thin films up to 99% Al contents are demonstrated via metalorganic chemical vapor deposition (MOCVD) using trimethylgallium (TMGa) as the Ga precursor. The utilization of TMGa, rather than triethylgallium, enables a significant improvement of the growth rates (>2.5 μm h−1) of β‐(AlxGa1−x)2O3 thin films on (010), (100), and ( 2¯ 01) β‐Ga2O3 substrates. By systematically tuning the precursor molar flow rates, growth of coherently strained phase pure β‐(AlxGa1−x)2O3 films is demonstrated by comprehensive material characterizations via high‐resolution X‐ray diffraction (XRD) and atomic‐resolution scanning transmission electron microscopy (STEM) imaging. Monoclinic (AlxGa1−x)2O3 films with Al contents up to 99, 29, and 16% are achieved on (100), (010), and ( 2¯ 01) β‐Ga2O3 substrates, respectively. Beyond 29% of Al incorporation, the (010) (AlxGa1−x)2O3 films exhibit β‐ to γ‐phase segregation. β‐(AlxGa1−x)2O3 films grown on ( 2¯ 01) β‐Ga2O3 show local segregation of Al along (100) plane. Record‐high Al incorporations up to 99% in monoclinic (AlxGa1−x)2O3 grown on (100) Ga2O3 are confirmed from XRD, STEM, electron nanodiffraction, and X‐ray photoelectron spectroscopy measurements. These results indicate great promises of MOCVD development of β‐(AlxGa1−x)2O3 films and heterostructures with high Al content and growth rates using TMGa for next‐generation high‐power and high‐frequency electronic devices.