In-Timestep Remeshing for Contacting Elastodynamics

Z. Ferguson, T. Schneider, D. Kaufman, Daniele Panozzo
{"title":"In-Timestep Remeshing for Contacting Elastodynamics","authors":"Z. Ferguson, T. Schneider, D. Kaufman, Daniele Panozzo","doi":"10.1145/3592428","DOIUrl":null,"url":null,"abstract":"We propose In-Timestep Remeshing, a fully coupled, adaptive meshing algorithm for contacting elastodynamics where remeshing steps are tightly integrated, implicitly, within the timestep solve. Our algorithm refines and coarsens the domain automatically by measuring physical energy changes within each ongoing timestep solve. This provides consistent, degree-of-freedom-efficient, productive remeshing that, by construction, is physics-aware and so avoids the errors, over-refinements, artifacts, per-example hand-tuning, and instabilities commonly encountered when remeshing with timestepping methods. Our in-timestep computation then ensures that each simulation step's output is both a converged stable solution on the updated mesh and a temporally consistent trajectory with respect to the model and solution of the last timestep. At the same time, the output is guaranteed safe (intersection- and inversion-free) across all operations. We demonstrate applications across a wide range of extreme stress tests with challenging contacts, sharp geometries, extreme compressions, large timesteps, and wide material stiffness ranges - all scenarios well-appreciated to challenge existing remeshing methods.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"96 1","pages":"1 - 15"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3592428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose In-Timestep Remeshing, a fully coupled, adaptive meshing algorithm for contacting elastodynamics where remeshing steps are tightly integrated, implicitly, within the timestep solve. Our algorithm refines and coarsens the domain automatically by measuring physical energy changes within each ongoing timestep solve. This provides consistent, degree-of-freedom-efficient, productive remeshing that, by construction, is physics-aware and so avoids the errors, over-refinements, artifacts, per-example hand-tuning, and instabilities commonly encountered when remeshing with timestepping methods. Our in-timestep computation then ensures that each simulation step's output is both a converged stable solution on the updated mesh and a temporally consistent trajectory with respect to the model and solution of the last timestep. At the same time, the output is guaranteed safe (intersection- and inversion-free) across all operations. We demonstrate applications across a wide range of extreme stress tests with challenging contacts, sharp geometries, extreme compressions, large timesteps, and wide material stiffness ranges - all scenarios well-appreciated to challenge existing remeshing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
接触弹性动力学的时间步重网格
我们提出了In-Timestep Remeshing,这是一种用于接触弹性动力学的完全耦合自适应网格算法,其中remesmesh步骤在时间步解内隐式地紧密集成。我们的算法通过测量每个持续时间步解内的物理能量变化来自动细化和粗化域。这提供了一致的、自由度高的、高效的重网格,通过构造,它是物理感知的,从而避免了使用时间步进方法重网格时经常遇到的错误、过度细化、工件、每个示例的手动调整和不稳定。然后,我们的时间步长计算确保每个模拟步骤的输出既是更新网格上的收敛稳定解,又是相对于最后一个时间步长的模型和解的时间一致轨迹。同时,保证所有操作的输出是安全的(无交叉和反转)。我们演示了各种极端应力测试的应用,包括具有挑战性的接触、尖锐的几何形状、极端压缩、大时间步长和宽材料刚度范围-所有这些场景都很适合挑战现有的重网格方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GeoLatent: A Geometric Approach to Latent Space Design for Deformable Shape Generators An Implicit Neural Representation for the Image Stack: Depth, All in Focus, and High Dynamic Range Rectifying Strip Patterns From Skin to Skeleton: Towards Biomechanically Accurate 3D Digital Humans Warped-Area Reparameterization of Differential Path Integrals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1