New Method to Separate Failure Modes by Transient Thermal Analysis of High Power LEDs

A. Hanss, E. Liu, M. Schmid, D. Müller, U. Karbowski, Robert Derix, G. Elger
{"title":"New Method to Separate Failure Modes by Transient Thermal Analysis of High Power LEDs","authors":"A. Hanss, E. Liu, M. Schmid, D. Müller, U. Karbowski, Robert Derix, G. Elger","doi":"10.1109/ECTC.2017.137","DOIUrl":null,"url":null,"abstract":"A high reliability of light emitting diode (LED) light sources is essential for general and automotive lighting applications, where exchange of LED components is expensive. Thermal management of modern high power LEDs is crucial for their lifetime. An important aspect is the thermal path for heat conduction. Many different defects can have an influence on this path of an electronic system: on the one hand process failures during production, e.g. voids inside the solder joint, on the other hand typical failures induced by thermo-mechanical stress during their lifetime, like cracks in the solder joint or delamination in the package. The transient thermal analysis (TTA) is a powerful tool to detect changes in the thermal path. Due to improvements in the TTA method during the last years, not only cracks can be detected but also failure modes can be separated, and the root cause can be analyzed by support of transient finite element analysis. In this paper, transient thermal testing is applied and further developed, to monitor the structural integrity of new wafer level LED packages during thermal stress testing. Failure modes are defined and separated. For failure analysis the different defects are simulated by transient finite element analysis and correlated to the TTA results. The simulation results, that solder cracks increase the peak height of the derivative of the transient thermal curves (b(z)). A delamination of an inner layer of the LED package creates additionally to the increase of the peak height also a separation of the b(z) curves between 1 µs and 5 µs. Therefore a transient thermal measurement equipment with a dead time","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"27 1","pages":"1136-1144"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2017.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A high reliability of light emitting diode (LED) light sources is essential for general and automotive lighting applications, where exchange of LED components is expensive. Thermal management of modern high power LEDs is crucial for their lifetime. An important aspect is the thermal path for heat conduction. Many different defects can have an influence on this path of an electronic system: on the one hand process failures during production, e.g. voids inside the solder joint, on the other hand typical failures induced by thermo-mechanical stress during their lifetime, like cracks in the solder joint or delamination in the package. The transient thermal analysis (TTA) is a powerful tool to detect changes in the thermal path. Due to improvements in the TTA method during the last years, not only cracks can be detected but also failure modes can be separated, and the root cause can be analyzed by support of transient finite element analysis. In this paper, transient thermal testing is applied and further developed, to monitor the structural integrity of new wafer level LED packages during thermal stress testing. Failure modes are defined and separated. For failure analysis the different defects are simulated by transient finite element analysis and correlated to the TTA results. The simulation results, that solder cracks increase the peak height of the derivative of the transient thermal curves (b(z)). A delamination of an inner layer of the LED package creates additionally to the increase of the peak height also a separation of the b(z) curves between 1 µs and 5 µs. Therefore a transient thermal measurement equipment with a dead time
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大功率led瞬态热分析分离失效模式的新方法
发光二极管(LED)光源的高可靠性对于通用和汽车照明应用至关重要,因为LED元件的交换成本很高。现代大功率led的热管理对其使用寿命至关重要。一个重要的方面是热传导的热路径。许多不同的缺陷都会对电子系统的这条路径产生影响:一方面是生产过程中的故障,例如焊点内部的空洞;另一方面是在其使用寿命期间由热机械应力引起的典型故障,例如焊点的裂纹或封装中的分层。瞬态热分析(TTA)是检测热路径变化的有力工具。由于近年来TTA方法的改进,不仅可以检测裂纹,还可以分离失效模式,并且可以通过瞬态有限元分析来分析根本原因。在本文中,瞬态热测试的应用和进一步发展,以监测新的晶圆级LED封装在热应力测试中的结构完整性。失效模式被定义和分离。在失效分析中,采用瞬态有限元法对不同缺陷进行模拟,并与TTA结果进行关联。模拟结果表明,焊料裂纹增加了瞬态热曲线导数的峰值高度(b(z))。LED封装内层的分层除了增加峰值高度外,还会在1µs和5µs之间产生b(z)曲线的分离。因此暂态热测量设备具有死区时间
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peridynamic Solution of Wetness Equation with Time Dependent Saturated Concentration in ANSYS Framework Axially Tapered Circular Core Polymer Optical Waveguides Enabling Highly Efficient Light Coupling Low Loss Channel-Shuffling Polymer Waveguides: Design and Fabrication Development of Packaging Technology for High Temperature Resistant SiC Module of Automobile Application 3D Packaging of Embedded Opto-Electronic Die and CMOS IC Based on Wet Etched Silicon Interposer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1