Hour-Ahead Solar Forecasting Program Using Back Propagation Artificial Neural Network

Tanawat Laopaiboon, W. Ongsakul, Pradya Panyainkaew, Nikhil Sasidharan
{"title":"Hour-Ahead Solar Forecasting Program Using Back Propagation Artificial Neural Network","authors":"Tanawat Laopaiboon, W. Ongsakul, Pradya Panyainkaew, Nikhil Sasidharan","doi":"10.23919/ICUE-GESD.2018.8635756","DOIUrl":null,"url":null,"abstract":"Solar photovoltaic power generation highly relies on solar irradiance, cloud cover variability, temperature, atmospheric aerosol levels, and other atmosphere parameters. Accurate forecasting of solar power is crucial to very short-term generation scheduling and on-line secure economic operation. In this paper, hour-ahead forecasting using BP-ANN is proposed. The inputs of BP-ANN include previous intervals of solar irradiation, moving average temperature, moving average relative humidity, time of the day and day of the year index. The supervised learning ANN render a higher accuracy with the good convergence mapping between input to target output data. The simulation of hour-ahead solar irradiation forecasting results from ANN render a better performance compared with autoregressive moving average model in terms of mean absolute Error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), mean bias error (MBE) and correlation coefficient (Corr).","PeriodicalId":6584,"journal":{"name":"2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE)","volume":"221 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICUE-GESD.2018.8635756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Solar photovoltaic power generation highly relies on solar irradiance, cloud cover variability, temperature, atmospheric aerosol levels, and other atmosphere parameters. Accurate forecasting of solar power is crucial to very short-term generation scheduling and on-line secure economic operation. In this paper, hour-ahead forecasting using BP-ANN is proposed. The inputs of BP-ANN include previous intervals of solar irradiation, moving average temperature, moving average relative humidity, time of the day and day of the year index. The supervised learning ANN render a higher accuracy with the good convergence mapping between input to target output data. The simulation of hour-ahead solar irradiation forecasting results from ANN render a better performance compared with autoregressive moving average model in terms of mean absolute Error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), mean bias error (MBE) and correlation coefficient (Corr).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用反向传播人工神经网络的小时前太阳预报程序
太阳能光伏发电高度依赖于太阳辐照度、云量变率、温度、大气气溶胶水平和其他大气参数。准确的太阳能发电预测是短期发电计划和在线安全经济运行的关键。提出了一种基于BP-ANN的小时前预测方法。BP-ANN的输入包括以前的太阳辐照间隔、移动平均温度、移动平均相对湿度、时间和年数指数。有监督学习人工神经网络由于其输入与目标输出数据之间具有良好的收敛映射关系,具有较高的精度。在平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)、平均偏置误差(MBE)和相关系数(Corr)方面,人工神经网络模拟的小时前太阳辐射预报结果优于自回归移动平均模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Probabilistic Analysis Approach for Large Power Systems with Renewable Resources Grid Integrated Solar Photovoltaic Array Power Plant Modeling and Simulation Hour-Ahead Solar Forecasting Program Using Back Propagation Artificial Neural Network Bhutan’s Urban Towns with Integration of Agricultural Land Use A Low Cost, Open-source IoT based 2-axis Active Solar Tracker for Smart Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1