S. Akadiri, T. Adebayo, Obioma Chinenyenwa Asuzu, Ijeoma Christina Onuogu, Izuchukwu Oji-Okoro
{"title":"Testing the role of economic complexity on the ecological footprint in China: a nonparametric causality-in-quantiles approach","authors":"S. Akadiri, T. Adebayo, Obioma Chinenyenwa Asuzu, Ijeoma Christina Onuogu, Izuchukwu Oji-Okoro","doi":"10.1177/0958305X221094573","DOIUrl":null,"url":null,"abstract":"China is known for its large industrial sector and diversified energy mix, which could contribute to environmental pollution, as fossil fuels remain China's main source of energy. With the recent drive by the Chinese government to achieve low carbon emissions and further reduce greenhouse gases, this study adds to the existing literature by combining the quantile-on-quantile (QQ) regression and non-parametric techniques to examine the role of economic complexity, nonrenewables energy and renewable energy consumption on the ecological footprint in China over the period 1985Q1–2019Q4. Overall, results show that renewable energy, non-renewable energy use, economic growth and economic complexity affects ecological footprint positively. In addition, the nonparametric causality outcomes revealed that renewable energy, non-renewable energy use, economic growth and economic complexity can significantly predict variations in ecological footprint at different quantiles. We are of the opinion that policymakers in this region should work on the pro-growth mentality of China, which is majorly fossil fuel-driven. This requires an immediate replacement with more eco-friendly sources and energy-saving technologies for economic activities. Otherwise, fulfilling the SDG 13 goals in China will be challenging. For a sustainable renewable energy investment, China should shift to ancillary and spot markets, where the low energy storage and low marginal cost of renewable energy could facilitate higher reduction in electricity cost and encourage higher trading of electricity.","PeriodicalId":11652,"journal":{"name":"Energy & Environment","volume":"232 1","pages":"2290 - 2316"},"PeriodicalIF":4.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0958305X221094573","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 53
Abstract
China is known for its large industrial sector and diversified energy mix, which could contribute to environmental pollution, as fossil fuels remain China's main source of energy. With the recent drive by the Chinese government to achieve low carbon emissions and further reduce greenhouse gases, this study adds to the existing literature by combining the quantile-on-quantile (QQ) regression and non-parametric techniques to examine the role of economic complexity, nonrenewables energy and renewable energy consumption on the ecological footprint in China over the period 1985Q1–2019Q4. Overall, results show that renewable energy, non-renewable energy use, economic growth and economic complexity affects ecological footprint positively. In addition, the nonparametric causality outcomes revealed that renewable energy, non-renewable energy use, economic growth and economic complexity can significantly predict variations in ecological footprint at different quantiles. We are of the opinion that policymakers in this region should work on the pro-growth mentality of China, which is majorly fossil fuel-driven. This requires an immediate replacement with more eco-friendly sources and energy-saving technologies for economic activities. Otherwise, fulfilling the SDG 13 goals in China will be challenging. For a sustainable renewable energy investment, China should shift to ancillary and spot markets, where the low energy storage and low marginal cost of renewable energy could facilitate higher reduction in electricity cost and encourage higher trading of electricity.
期刊介绍:
Energy & Environment is an interdisciplinary journal inviting energy policy analysts, natural scientists and engineers, as well as lawyers and economists to contribute to mutual understanding and learning, believing that better communication between experts will enhance the quality of policy, advance social well-being and help to reduce conflict. The journal encourages dialogue between the social sciences as energy demand and supply are observed and analysed with reference to politics of policy-making and implementation. The rapidly evolving social and environmental impacts of energy supply, transport, production and use at all levels require contribution from many disciplines if policy is to be effective. In particular E & E invite contributions from the study of policy delivery, ultimately more important than policy formation. The geopolitics of energy are also important, as are the impacts of environmental regulations and advancing technologies on national and local politics, and even global energy politics. Energy & Environment is a forum for constructive, professional information sharing, as well as debate across disciplines and professions, including the financial sector. Mathematical articles are outside the scope of Energy & Environment. The broader policy implications of submitted research should be addressed and environmental implications, not just emission quantities, be discussed with reference to scientific assumptions. This applies especially to technical papers based on arguments suggested by other disciplines, funding bodies or directly by policy-makers.