Proteinuria observed post-uninephrectomy stems from partial suppression of protein endocytosis along the proximal tubule

IF 5.3 2区 医学 Q1 PHYSIOLOGY Physiology Pub Date : 2023-05-01 DOI:10.1152/physiol.2023.38.s1.5728886
A. Edwards, D. Ralph, Hillmin Lei, Taylor S. Priver, A. McDonough
{"title":"Proteinuria observed post-uninephrectomy stems from partial suppression of protein endocytosis along the proximal tubule","authors":"A. Edwards, D. Ralph, Hillmin Lei, Taylor S. Priver, A. McDonough","doi":"10.1152/physiol.2023.38.s1.5728886","DOIUrl":null,"url":null,"abstract":"Living kidney donors are at higher risk of developing proteinuria, yet few studies have addressed the etiology. To investigate whether post-uninephrectomy (UNX) proteinuria was due to increased filtration and/or reduced endocytosis/reabsorption along the proximal tubule (PT), we compared renal function, morphology, and PT endocytic machinery in male Sprague Dawley rats before and after UNX.At 12 wk post-UNX, the weight of the remnant kidney rose by 50%, PT diameters by 30%, and single nephron GFR by 50% (based on 26% fall in creatinine clearance and 50% decrease in the number of nephrons). Urinary albumin excretion increased 10-fold post-UNX. Since the filtered load of proteins decreases in parallel with GFR post-UNX, increased albumin excretion likely reflects decreased endocytosis along the PT, a notion supported by a 50% reduction in abundance of albumin and plasminogen in renal cortex homogenates from remnant versus explant kidneys. We tested the hypothesis that the protein endocytic machinery was reduced following UNX. Immunoblot assays of renal cortex revealed decreased abundance of megalin and Dab2, two key mediators of protein endocytosis along the PT, and no change in cubilin abundance. Immunohistochemistry confirmed a 50% fall in megalin along the PT apical membrane.Mathematical modeling predicted that albumin uptake per nephron increases post-UNX, owing to higher single nephron GFR and PT hypertrophy, but is attenuated by the decrease in megalin abundance; moreover, modeling predicts that if the endocytic machinery were not partly suppressed, overall albumin excretion would remain at pre-UNX levels.In addition to albumin, urinary plasminogen and angiotensinogen were similarly increased post-UNX, while uromodulin (synthesized and secreted distally) was decreased post-UNX. Urinary biomarkers of renal injury, RBP4 and KIM-1, were increased post-UNX likely reflecting the impact of the increased endocytosis of albumin which can carry bound toxic lipids into the PT.Taken together, our findings suggest that the blunting of albumin endocytosis post-UNX, apparent as increased albuminuria, may serve to protect PT cells from albumin-induced cytotoxicity. DK083785; Keck School of Medicine Dean’s Pilot Funding This is the full abstract presented at the American Physiology Summit 2023 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.","PeriodicalId":49694,"journal":{"name":"Physiology","volume":"45 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physiol.2023.38.s1.5728886","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Living kidney donors are at higher risk of developing proteinuria, yet few studies have addressed the etiology. To investigate whether post-uninephrectomy (UNX) proteinuria was due to increased filtration and/or reduced endocytosis/reabsorption along the proximal tubule (PT), we compared renal function, morphology, and PT endocytic machinery in male Sprague Dawley rats before and after UNX.At 12 wk post-UNX, the weight of the remnant kidney rose by 50%, PT diameters by 30%, and single nephron GFR by 50% (based on 26% fall in creatinine clearance and 50% decrease in the number of nephrons). Urinary albumin excretion increased 10-fold post-UNX. Since the filtered load of proteins decreases in parallel with GFR post-UNX, increased albumin excretion likely reflects decreased endocytosis along the PT, a notion supported by a 50% reduction in abundance of albumin and plasminogen in renal cortex homogenates from remnant versus explant kidneys. We tested the hypothesis that the protein endocytic machinery was reduced following UNX. Immunoblot assays of renal cortex revealed decreased abundance of megalin and Dab2, two key mediators of protein endocytosis along the PT, and no change in cubilin abundance. Immunohistochemistry confirmed a 50% fall in megalin along the PT apical membrane.Mathematical modeling predicted that albumin uptake per nephron increases post-UNX, owing to higher single nephron GFR and PT hypertrophy, but is attenuated by the decrease in megalin abundance; moreover, modeling predicts that if the endocytic machinery were not partly suppressed, overall albumin excretion would remain at pre-UNX levels.In addition to albumin, urinary plasminogen and angiotensinogen were similarly increased post-UNX, while uromodulin (synthesized and secreted distally) was decreased post-UNX. Urinary biomarkers of renal injury, RBP4 and KIM-1, were increased post-UNX likely reflecting the impact of the increased endocytosis of albumin which can carry bound toxic lipids into the PT.Taken together, our findings suggest that the blunting of albumin endocytosis post-UNX, apparent as increased albuminuria, may serve to protect PT cells from albumin-induced cytotoxicity. DK083785; Keck School of Medicine Dean’s Pilot Funding This is the full abstract presented at the American Physiology Summit 2023 meeting and is only available in HTML format. There are no additional versions or additional content available for this abstract. Physiology was not involved in the peer review process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肾切除术后蛋白尿是由于近端小管蛋白内吞作用部分抑制所致
活体肾脏供者发生蛋白尿的风险较高,但很少有研究涉及其病因。为了研究unphrectomy (UNX)后蛋白尿是否由于滤过增加和/或沿近端小管(PT)的内吞/重吸收减少,我们比较了雄性Sprague Dawley大鼠unphrectomy前后的肾功能、形态学和PT内吞机制。unx术后12周,残肾重量增加50%,肾PT直径增加30%,单个肾单位GFR增加50%(基于肌酐清除率下降26%和肾单位数量减少50%)。尿白蛋白排泄增加了10倍。由于unx后蛋白质的过滤负荷与GFR平行减少,白蛋白排泄增加可能反映了沿PT的内吞作用减少,这一观点得到了残肾与移植肾的肾皮质匀浆中白蛋白和纤溶酶原丰度减少50%的支持。我们测试了蛋白质内吞机制在UNX后减少的假设。免疫印迹检测显示,肾皮质沿PT蛋白内吞作用的两种关键介质meggalin和Dab2的丰度降低,cubilin丰度无变化。免疫组化证实甲galin沿PT顶端膜下降50%。数学模型预测,unx后每肾单位白蛋白摄取增加,这是由于单肾单位GFR升高和PT肥大,但由于巨噬蛋白丰度的降低而减弱;此外,模型预测,如果内吞机制不被部分抑制,总体白蛋白排泄将保持在unx前的水平。除白蛋白外,unx后尿纤溶酶原和血管紧张素原也同样增加,而尿调素(远端合成和分泌)则减少。肾损伤的尿液生物标志物RBP4和KIM-1在unx后增加,可能反映了白蛋白内吞作用增加的影响,白蛋白内吞作用可以携带结合的有毒脂质进入PT。总之,我们的研究结果表明,unx后白蛋白内吞作用的减弱,明显表现为白蛋白尿的增加,可能有助于保护PT细胞免受白蛋白诱导的细胞毒性。DK083785;这是在2023年美国生理学峰会会议上发表的全文摘要,仅以HTML格式提供。此摘要没有附加版本或附加内容。生理学没有参与同行评议过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiology
Physiology 医学-生理学
CiteScore
14.50
自引率
0.00%
发文量
37
期刊介绍: Physiology journal features meticulously crafted review articles penned by esteemed leaders in their respective fields. These articles undergo rigorous peer review and showcase the forefront of cutting-edge advances across various domains of physiology. Our Editorial Board, comprised of distinguished leaders in the broad spectrum of physiology, convenes annually to deliberate and recommend pioneering topics for review articles, as well as select the most suitable scientists to author these articles. Join us in exploring the forefront of physiological research and innovation.
期刊最新文献
Low-Grade Chronic Inflammation: a Shared Mechanism for Chronic Diseases. Predictors of Inflammation-Mediated Preterm Birth. Factors Contributing to Heat Tolerance in Humans and Experimental Models. Harnessing Deep Learning Methods for Voltage-Gated Ion Channel Drug Discovery. Role of RANKL Signaling in Bone Homeostasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1