Fuzzy neural network classification design using support vector machine

Chin-Teng Lin, Chang-Moun Yeh, Chun-Fei Hsu
{"title":"Fuzzy neural network classification design using support vector machine","authors":"Chin-Teng Lin, Chang-Moun Yeh, Chun-Fei Hsu","doi":"10.1109/ISCAS.2004.1329910","DOIUrl":null,"url":null,"abstract":"Fuzzy neural networks (FNNs) for pattern classification usually use the backpropagation or C-cluster type learning algorithms to learn the parameters of the fuzzy rules and membership functions from the training data. However, such kinds of learning algorithms usually cannot minimize the empirical risk (training error) and expected risk (testing error) simultaneously, and thus cannot reach a good classification performance in the testing phase. To tackle this drawback, a support-vector-based fuzzy neural network classification (SVFNNC) is proposed. The SVFNNC combines the superior classification power of support vector machine (SVM) in high reasoning of FNN in handling uncertainty information. The learning algorithm consists of two learning phases. In the phase 1, the fuzzy rules and membership functions are automatically determined by the clustering principle. In the phase 2, the parameters of FNN are calculated by the SVM with the proposed adaptive fuzzy kernel function. To investigate the effectiveness of the proposed SVFNNC, it is applied to the iris, vehicle and dna datasets. Experimental results show that the proposed SVFNNC can achieve good classification performance with drastically reduced number of fuzzy kernel functions.","PeriodicalId":6445,"journal":{"name":"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)","volume":"58 1","pages":"V-V"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2004.1329910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Fuzzy neural networks (FNNs) for pattern classification usually use the backpropagation or C-cluster type learning algorithms to learn the parameters of the fuzzy rules and membership functions from the training data. However, such kinds of learning algorithms usually cannot minimize the empirical risk (training error) and expected risk (testing error) simultaneously, and thus cannot reach a good classification performance in the testing phase. To tackle this drawback, a support-vector-based fuzzy neural network classification (SVFNNC) is proposed. The SVFNNC combines the superior classification power of support vector machine (SVM) in high reasoning of FNN in handling uncertainty information. The learning algorithm consists of two learning phases. In the phase 1, the fuzzy rules and membership functions are automatically determined by the clustering principle. In the phase 2, the parameters of FNN are calculated by the SVM with the proposed adaptive fuzzy kernel function. To investigate the effectiveness of the proposed SVFNNC, it is applied to the iris, vehicle and dna datasets. Experimental results show that the proposed SVFNNC can achieve good classification performance with drastically reduced number of fuzzy kernel functions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的模糊神经网络分类设计
用于模式分类的模糊神经网络(fnn)通常使用反向传播或c类学习算法从训练数据中学习模糊规则参数和隶属函数。然而,这类学习算法通常不能同时最小化经验风险(训练误差)和预期风险(测试误差),因此在测试阶段无法达到良好的分类性能。为了解决这一缺陷,提出了一种基于支持向量的模糊神经网络分类方法。该算法在处理不确定性信息时,结合了支持向量机(SVM)在高度推理方面的优越分类能力。该学习算法包括两个学习阶段。在第一阶段,根据聚类原理自动确定模糊规则和隶属函数。在第二阶段,利用所提出的自适应模糊核函数计算支持向量机的参数。为了验证所提出的SVFNNC的有效性,将其应用于虹膜、车辆和dna数据集。实验结果表明,该方法可以在大幅度减少模糊核函数数量的情况下取得较好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accurate fault detection in switched-capacitor filters using structurally allpass building blocks Silicon on sapphire CMOS architectures for interferometric array readout Implementation of Farrow structure based interpolators with subfilters of odd length Dual-edge triggered level converting flip-flops A novel CMOS double-edge triggered flip-flop for low-power applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1