Emergence of strain-induced moiré patterns and pseudomagnetic field confined states in graphene

Md. Tareq Mahmud, N. Sandler
{"title":"Emergence of strain-induced moiré patterns and pseudomagnetic field confined states in graphene","authors":"Md. Tareq Mahmud, N. Sandler","doi":"10.1103/physrevb.102.235410","DOIUrl":null,"url":null,"abstract":"Strain-inducing deformations in graphene alter charge distributions and provide a new method to design specific features in the band structure and transport properties. Novel approaches implement engineered substrates to induce specifically targeted strain profiles. Motivated by this technique, we study the evolution of charge distributions with an increasing number of out-of-plane deformations as an example of a finite size periodic substrate. We first analyze a system of two overlapping deformations and determine the quantitative relation between geometrical parameters and features in the local density of states. We extend the study to sets of 3 and 4 deformations in linear and two-dimensional arrays and observe the emergence of moire patterns that are more pronounced for a hexagonal cell composed of 7 deformations. A comparison between the induced strain profile and spatial maps of the local density of states at different energies provides evidence for the existence of states confined by the pseudo-magnetic field in bounded regions, reminiscent of quantum dots structures. Due to the presence of these states, the energy level scaling to be observed by local probes should exhibit a linear dependence with the pseudo-field, in contrast to the expected scaling of pseudo-Landau levels.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.235410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Strain-inducing deformations in graphene alter charge distributions and provide a new method to design specific features in the band structure and transport properties. Novel approaches implement engineered substrates to induce specifically targeted strain profiles. Motivated by this technique, we study the evolution of charge distributions with an increasing number of out-of-plane deformations as an example of a finite size periodic substrate. We first analyze a system of two overlapping deformations and determine the quantitative relation between geometrical parameters and features in the local density of states. We extend the study to sets of 3 and 4 deformations in linear and two-dimensional arrays and observe the emergence of moire patterns that are more pronounced for a hexagonal cell composed of 7 deformations. A comparison between the induced strain profile and spatial maps of the local density of states at different energies provides evidence for the existence of states confined by the pseudo-magnetic field in bounded regions, reminiscent of quantum dots structures. Due to the presence of these states, the energy level scaling to be observed by local probes should exhibit a linear dependence with the pseudo-field, in contrast to the expected scaling of pseudo-Landau levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石墨烯中应变诱导的莫尔条纹和伪磁场约束态的出现
石墨烯中的应变诱导变形改变了电荷分布,并为设计能带结构和输运性质的特定特征提供了一种新方法。新的方法实现工程基板,以诱导特定的目标应变曲线。在这种技术的激励下,我们以有限尺寸周期性衬底为例,研究了随着面外变形数量的增加电荷分布的演变。我们首先分析了两个重叠变形系统,并确定了几何参数与局部状态密度特征之间的定量关系。我们将研究扩展到线性和二维阵列中的3和4个变形集,并观察到由7个变形组成的六边形单元中更明显的云纹图案的出现。在不同能量下的诱导应变分布图和局部态密度的空间图之间的比较,提供了在有界区域内被伪磁场限制的态的存在的证据,使人联想到量子点结构。由于这些态的存在,局部探针观察到的能级标度应该与伪场呈线性关系,与伪朗道能级的预期标度相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A driven fractal network: Possible route to efficient thermoelectric application Double Electron Spin Resonance of Engineered Atomic Structures on a Surface Reconfigurable Training, Vortex Writing and Spin-Wave Fingerprinting in an Artificial Spin-Vortex Ice Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Observation of electrically tunable Feshbach resonances in twisted bilayer semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1