An Autonomous Adaptive Enhancement Method Based on Learning to Optimize Heterogeneous Network Selection

Y. Sucharitha, Pundru Chandra Shaker Reddy
{"title":"An Autonomous Adaptive Enhancement Method Based on Learning to Optimize Heterogeneous Network Selection","authors":"Y. Sucharitha, Pundru Chandra Shaker Reddy","doi":"10.2174/2210327912666221012154428","DOIUrl":null,"url":null,"abstract":"\n\nMobile workstations are frequently used in heterogeneous network's challenging environments. Users must move between various networks for a myriad of purposes, including vertical handover. At this time, it is critical for the mobile station to quickly pick the most appropriate networks from all identified alternative connections with the decision outcome, avoiding the ping-pong effect to the greatest extent feasible.\n\n\n\nBased on a combination of network characteristics as well as user choice, this study offers a heterogeneous network selection method. This technique integrates three common Multi-Attribute Decision-Making (MADM) techniques, notably the Fuzzy Analytic Hierarchy Process (FAHP), Entropy, and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), to take into consideration user preferences for every prospective network as well as the real scenario of heterogeneous networks. For different traffic classes, FAHP is first utilized to determine the weights of network parameters and the utility numbers of total options available. Next, entropies and TOPSIS are utilized to obtain only the unbiased weightages of network factors and utility principles of totally different options.\n\n\n\nThe most suitable networks, whose utility number is the greatest and larger than that of the equivalent number of present networks of the phone station, are chosen to provide accessibility based on the utility numbers of each prospective system as a limit. The suggested method not only eliminates a particular algorithm's one-sided character but also dynamically changes the percentage of each method in the desired outcome based on real needs.\n\n\n\nThe proposed model was compared to the three existing hybrid methods. The results showed that it could precisely choose the optimized network connectivity and significantly reduce the value of vertical handoffs. It also provides the requisite Quality of Service (QoS) and Quality of Everything (QoE) in terms of the quantitative benefits of vertical handovers.\n","PeriodicalId":37686,"journal":{"name":"International Journal of Sensors, Wireless Communications and Control","volume":"2013 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sensors, Wireless Communications and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210327912666221012154428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 17

Abstract

Mobile workstations are frequently used in heterogeneous network's challenging environments. Users must move between various networks for a myriad of purposes, including vertical handover. At this time, it is critical for the mobile station to quickly pick the most appropriate networks from all identified alternative connections with the decision outcome, avoiding the ping-pong effect to the greatest extent feasible. Based on a combination of network characteristics as well as user choice, this study offers a heterogeneous network selection method. This technique integrates three common Multi-Attribute Decision-Making (MADM) techniques, notably the Fuzzy Analytic Hierarchy Process (FAHP), Entropy, and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), to take into consideration user preferences for every prospective network as well as the real scenario of heterogeneous networks. For different traffic classes, FAHP is first utilized to determine the weights of network parameters and the utility numbers of total options available. Next, entropies and TOPSIS are utilized to obtain only the unbiased weightages of network factors and utility principles of totally different options. The most suitable networks, whose utility number is the greatest and larger than that of the equivalent number of present networks of the phone station, are chosen to provide accessibility based on the utility numbers of each prospective system as a limit. The suggested method not only eliminates a particular algorithm's one-sided character but also dynamically changes the percentage of each method in the desired outcome based on real needs. The proposed model was compared to the three existing hybrid methods. The results showed that it could precisely choose the optimized network connectivity and significantly reduce the value of vertical handoffs. It also provides the requisite Quality of Service (QoS) and Quality of Everything (QoE) in terms of the quantitative benefits of vertical handovers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习的自主自适应增强异构网络选择优化方法
移动工作站经常用于异构网络的复杂环境中。用户必须为了各种各样的目的在不同的网络之间移动,包括垂直切换。此时,移动站从所有已识别的具有决策结果的备选连接中快速选择最合适的网络,最大程度地避免乒乓效应是至关重要的。基于网络特性和用户选择的结合,本研究提出了一种异构网络选择方法。该技术集成了三种常见的多属性决策(MADM)技术,特别是模糊层次分析法(FAHP),熵和理想解决相似度排序偏好技术(TOPSIS),以考虑每个预期网络的用户偏好以及异构网络的实际场景。对于不同的流量类别,首先利用FAHP确定网络参数的权重和可用的总选项的效用数。其次,利用熵和TOPSIS只得到网络因素的无偏权重和完全不同选项的效用原则。选择最合适的网络,其效用数最大且大于电话站现有等效网络的效用数,以基于每个预期系统的效用数作为限制提供可达性。该方法不仅消除了特定算法的单向性,而且根据实际需要动态改变每种方法在期望结果中的百分比。将该模型与现有的三种混合方法进行了比较。结果表明,该方法可以精确地选择最优的网络连接,并显著降低垂直切换的值。就垂直移交的定量效益而言,它还提供了必要的服务质量(QoS)和一切质量(QoE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Sensors, Wireless Communications and Control
International Journal of Sensors, Wireless Communications and Control Engineering-Electrical and Electronic Engineering
CiteScore
2.20
自引率
0.00%
发文量
53
期刊介绍: International Journal of Sensors, Wireless Communications and Control publishes timely research articles, full-length/ mini reviews and communications on these three strongly related areas, with emphasis on networked control systems whose sensors are interconnected via wireless communication networks. The emergence of high speed wireless network technologies allows a cluster of devices to be linked together economically to form a distributed system. Wireless communication is playing an increasingly important role in such distributed systems. Transmitting sensor measurements and control commands over wireless links allows rapid deployment, flexible installation, fully mobile operation and prevents the cable wear and tear problem in industrial automation, healthcare and environmental assessment. Wireless networked systems has raised and continues to raise fundamental challenges in the fields of science, engineering and industrial applications, hence, more new modelling techniques, problem formulations and solutions are required.
期刊最新文献
Non-orthogonal Multiple Access (NOMA) Channel Estimation for Mobile & PLC-VLC Based Broadband Communication System Optimizing Financial Decision Support Systems with Machine LearningDriven Recommendations An Energy-Balance Clustering Routing Protocol for Intra-Body Wireless Nanosensor Networks Unveiling Data Fairness Functional Requirements in Big Data Analytics Through Data Mapping and Classification Analysis An Intelligent Transport System Using Vehicular Network for Smart Cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1