Direct Multiclass Boosting Using Base Classifiers' Posterior Probabilities Estimates

M. Bourel, B. Ghattas
{"title":"Direct Multiclass Boosting Using Base Classifiers' Posterior Probabilities Estimates","authors":"M. Bourel, B. Ghattas","doi":"10.1109/ICMLA.2017.0-154","DOIUrl":null,"url":null,"abstract":"We present a new multiclass boosting algorithm called Adaboost.BG. Like the original Freund and Shapire's Adaboost algorithm, it aggregates trees but instead of using their misclassification error it takes into account the margins of the observations, which may be seen as confidence measures of their prediction, rather then their correctness. We prove the efficiency of our algorithm by simulation and compare it to similar approaches known to minimize the global margins of the final classifier.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"15 1","pages":"228-233"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.0-154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new multiclass boosting algorithm called Adaboost.BG. Like the original Freund and Shapire's Adaboost algorithm, it aggregates trees but instead of using their misclassification error it takes into account the margins of the observations, which may be seen as confidence measures of their prediction, rather then their correctness. We prove the efficiency of our algorithm by simulation and compare it to similar approaches known to minimize the global margins of the final classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于基分类器后验概率估计的直接多类提升
提出了一种新的多类增强算法Adaboost.BG。像最初的Freund和Shapire的Adaboost算法一样,它聚合了树,但没有使用他们的误分类误差,而是考虑了观察结果的边缘,这可能被视为他们预测的置信度,而不是他们的正确性。我们通过仿真证明了算法的有效性,并将其与已知的最小化最终分类器全局边缘的类似方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree-Structured Curriculum Learning Based on Semantic Similarity of Text Direct Multiclass Boosting Using Base Classifiers' Posterior Probabilities Estimates Predicting Psychosis Using the Experience Sampling Method with Mobile Apps Human Action Recognition from Body-Part Directional Velocity Using Hidden Markov Models Realistic Traffic Generation for Web Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1