A. Doronin, A. Radosevich, V. Backman, I. Meglinski
{"title":"Comparison of two Monte Carlo models of propagation of coherent polarized light in turbid scattering media","authors":"A. Doronin, A. Radosevich, V. Backman, I. Meglinski","doi":"10.1117/12.2038825","DOIUrl":null,"url":null,"abstract":"Modeling the propagation of coherent polarized light through a turbid scattering medium using the Monte Carlo method enables better understanding of the peculiarities of image/signal formation in modern optical diagnostic techniques, such as optical coherence tomography (OCT), coherent/enhanced backscattering, laser speckle imaging and diffusing-wave spectroscopy (DWS). Two major ways of modeling the propagation of coherent polarized light in scattering tissue-like media are currently in use. The first approach is tracking transformations of the electric field along ray propagation. Second one is developed in analogy to the iterative procedure of the solution of Bethe-Salpeter equation. In the current paper we compare these two approaches that have been extensively used in the past for simulation of coherent polarized light propagation in scattering tissue-like media, and quantitative assessment of the enhancement of coherent backscattering of light. In particular we compare the accuracy of each technique with the results obtained in experiments and with the results of known analytical solutions. The advantages and disadvantages of each technique and their further developments are discussed.","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"108 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2014-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/12.2038825","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 3
Abstract
Modeling the propagation of coherent polarized light through a turbid scattering medium using the Monte Carlo method enables better understanding of the peculiarities of image/signal formation in modern optical diagnostic techniques, such as optical coherence tomography (OCT), coherent/enhanced backscattering, laser speckle imaging and diffusing-wave spectroscopy (DWS). Two major ways of modeling the propagation of coherent polarized light in scattering tissue-like media are currently in use. The first approach is tracking transformations of the electric field along ray propagation. Second one is developed in analogy to the iterative procedure of the solution of Bethe-Salpeter equation. In the current paper we compare these two approaches that have been extensively used in the past for simulation of coherent polarized light propagation in scattering tissue-like media, and quantitative assessment of the enhancement of coherent backscattering of light. In particular we compare the accuracy of each technique with the results obtained in experiments and with the results of known analytical solutions. The advantages and disadvantages of each technique and their further developments are discussed.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.