AugCSE: Contrastive Sentence Embedding with Diverse Augmentations

Q3 Environmental Science AACL Bioflux Pub Date : 2022-10-20 DOI:10.48550/arXiv.2210.13749
Zilu Tang, Muhammed Yusuf Kocyigit, D. Wijaya
{"title":"AugCSE: Contrastive Sentence Embedding with Diverse Augmentations","authors":"Zilu Tang, Muhammed Yusuf Kocyigit, D. Wijaya","doi":"10.48550/arXiv.2210.13749","DOIUrl":null,"url":null,"abstract":"Data augmentation techniques have been proven useful in many applications in NLP fields. Most augmentations are task-specific, and cannot be used as a general-purpose tool. In our work, we present AugCSE, a unified framework to utilize diverse sets of data augmentations to achieve a better, general-purpose, sentence embedding model. Building upon the latest sentence embedding models, our approach uses a simple antagonistic discriminator that differentiates the augmentation types. With the finetuning objective borrowed from domain adaptation, we show that diverse augmentations, which often lead to conflicting contrastive signals, can be tamed to produce a better and more robust sentence representation. Our methods achieve state-of-the-art results on downstream transfer tasks and perform competitively on semantic textual similarity tasks, using only unsupervised data.","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"21 1","pages":"375-398"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.13749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 4

Abstract

Data augmentation techniques have been proven useful in many applications in NLP fields. Most augmentations are task-specific, and cannot be used as a general-purpose tool. In our work, we present AugCSE, a unified framework to utilize diverse sets of data augmentations to achieve a better, general-purpose, sentence embedding model. Building upon the latest sentence embedding models, our approach uses a simple antagonistic discriminator that differentiates the augmentation types. With the finetuning objective borrowed from domain adaptation, we show that diverse augmentations, which often lead to conflicting contrastive signals, can be tamed to produce a better and more robust sentence representation. Our methods achieve state-of-the-art results on downstream transfer tasks and perform competitively on semantic textual similarity tasks, using only unsupervised data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同增词的对比句嵌入
数据增强技术已被证明在自然语言处理领域的许多应用中是有用的。大多数增强功能都是特定于任务的,不能用作通用工具。在我们的工作中,我们提出了AugCSE,这是一个统一的框架,可以利用不同的数据增强集来实现更好的通用句子嵌入模型。基于最新的句子嵌入模型,我们的方法使用一个简单的拮抗鉴别器来区分增强类型。通过借鉴领域自适应的微调目标,我们证明了不同的增强通常会导致冲突的对比信号,可以被驯服以产生更好和更鲁棒的句子表示。我们的方法在下游传输任务上取得了最先进的结果,并在语义文本相似任务上具有竞争力,仅使用无监督数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
期刊最新文献
HaRiM^+: Evaluating Summary Quality with Hallucination Risk PESE: Event Structure Extraction using Pointer Network based Encoder-Decoder Architecture Bipartite-play Dialogue Collection for Practical Automatic Evaluation of Dialogue Systems Local Structure Matters Most in Most Languages Unsupervised Domain Adaptation for Sparse Retrieval by Filling Vocabulary and Word Frequency Gaps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1