Adaptations of the k-Means Algorithm to Community Detection in Parallel Environments

András Bóta, Miklós Krész, Bogdán Zaválnij
{"title":"Adaptations of the k-Means Algorithm to Community Detection in Parallel Environments","authors":"András Bóta, Miklós Krész, Bogdán Zaválnij","doi":"10.1109/SYNASC.2015.54","DOIUrl":null,"url":null,"abstract":"In this paper we present preliminary results for a fast parallel adaptation of the well-known k-means clustering algorithm to graphs. We are going to use our method to detect communities in complex networks. For testing purposes we will use the graph generator of Lancichinetti et al., and we are going to compare our method with the OSLOM, CPM, and hub percolation overlapping community detection methods.","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"45 1","pages":"299-302"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we present preliminary results for a fast parallel adaptation of the well-known k-means clustering algorithm to graphs. We are going to use our method to detect communities in complex networks. For testing purposes we will use the graph generator of Lancichinetti et al., and we are going to compare our method with the OSLOM, CPM, and hub percolation overlapping community detection methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行环境下k-Means算法在社区检测中的应用
在本文中,我们给出了一个快速并行适应著名的k-均值聚类算法的初步结果。我们将使用我们的方法来检测复杂网络中的社区。出于测试目的,我们将使用Lancichinetti等人的图形生成器,并将我们的方法与OSLOM、CPM和hub渗流重叠社区检测方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incremental Reasoning on Strongly Distributed Multi-agent Systems Extensions over OpenCL for Latency Reduction and Critical Applications An Improved Upper-Bound Algorithm for Non-preemptive Task Scheduling Adaptations of the k-Means Algorithm to Community Detection in Parallel Environments Improving Malware Detection Response Time with Behavior-Based Statistical Analysis Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1