Simple conditions for convergence of sequential Monte Carlo genealogies with applications

Suzie Brown, P. A. Jenkins, A. M. Johansen, Jere Koskela
{"title":"Simple conditions for convergence of sequential Monte Carlo genealogies with applications","authors":"Suzie Brown, P. A. Jenkins, A. M. Johansen, Jere Koskela","doi":"10.1214/20-ejp561","DOIUrl":null,"url":null,"abstract":"Sequential Monte Carlo algorithms are popular methods for approximating integrals in problems such as non-linear filtering and smoothing. Their performance depends strongly on the properties of an induced genealogical process. We present simple conditions under which the limiting process, as the number of particles grows, is a time-rescaled Kingman coalescent. We establish these conditions for standard sequential Monte Carlo with a broad class of low-variance resampling schemes, as well as for conditional sequential Monte Carlo with multinomial resampling.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-ejp561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Sequential Monte Carlo algorithms are popular methods for approximating integrals in problems such as non-linear filtering and smoothing. Their performance depends strongly on the properties of an induced genealogical process. We present simple conditions under which the limiting process, as the number of particles grows, is a time-rescaled Kingman coalescent. We establish these conditions for standard sequential Monte Carlo with a broad class of low-variance resampling schemes, as well as for conditional sequential Monte Carlo with multinomial resampling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
序贯蒙特卡罗谱收敛的简单条件及其应用
时序蒙特卡罗算法是在非线性滤波和平滑等问题中逼近积分的常用方法。它们的表现在很大程度上取决于诱导谱系过程的性质。我们给出了一些简单的条件,在这些条件下,随着粒子数量的增加,极限过程是一个时间尺度的金曼聚结。我们为具有广泛的低方差重采样方案的标准序列蒙特卡罗,以及具有多项重采样的条件序列蒙特卡罗,建立了这些条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1