Phonons and Quantum Criticality Revealed by Temperature Linear Resistivity in Twisted Double Bilayer Graphene

Yanbang Chu, Le Liu, Cheng Shen, Jinpeng Tian, Jian Tang, Yanchong Zhao, Jieying Liu, Yalong Yuan, Y. Ji, Rong Yang, Kenji Watanabe, T. Taniguchi, D. Shi, Fengcheng Wu, Wei Yang, Guangyu Zhang
{"title":"Phonons and Quantum Criticality Revealed by Temperature Linear Resistivity in Twisted Double Bilayer Graphene","authors":"Yanbang Chu, Le Liu, Cheng Shen, Jinpeng Tian, Jian Tang, Yanchong Zhao, Jieying Liu, Yalong Yuan, Y. Ji, Rong Yang, Kenji Watanabe, T. Taniguchi, D. Shi, Fengcheng Wu, Wei Yang, Guangyu Zhang","doi":"10.1103/PhysRevB.106.035107","DOIUrl":null,"url":null,"abstract":"\n Twisted double bilayer graphene (TDBG) is an electric-field-tunable moiré system, exhibiting electron correlated states and related temperature linear (T-linear) resistivity. The displacement field provides a new knob to in-situ tune the relative strength of electron interactions in TDBG, yielding not only a rich phase diagram but also the ability to investigate each phase individually. Here, we report a study of carrier density (n), displacement field (D) and twist angle (θ) dependence of T-linear resistivity in TDBG. For a large twist angle (θ > 1.5°) where correlated insulating states are absent, we observe a T-linear resistivity (order of 10Ω/K) over a wide range of carrier density and its slope decreases with increasing of n before reaching the van Hove singularity, in agreement with acoustic phonon scattering model. The slope of T-linear resistivity is non-monotonically dependent on displacement field, with a single peak structure closely connected to single-particle van Hove Singularity (vHS) in TDBG. For an optimal twist angle of ~ 1.23° in the presence of correlated states, the slope of T-linear resistivity is found maximum at the boundary of the correlated halo regime (order of 100Ω/K), resulting a ‘M’ shape displacement field dependence. The observation is beyond the phonon scattering model from single particle picture, and instead it suggests a strange metal behavior. We interpret the observation as a result of symmetry-breaking instability developed at quantum critical points where electron degeneracy changes. Our results demonstrate that TDBG is an ideal system to study the interplay between phonon and quantum criticality, and might help to map out the evolution of the order parameters for the ground states.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.106.035107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Twisted double bilayer graphene (TDBG) is an electric-field-tunable moiré system, exhibiting electron correlated states and related temperature linear (T-linear) resistivity. The displacement field provides a new knob to in-situ tune the relative strength of electron interactions in TDBG, yielding not only a rich phase diagram but also the ability to investigate each phase individually. Here, we report a study of carrier density (n), displacement field (D) and twist angle (θ) dependence of T-linear resistivity in TDBG. For a large twist angle (θ > 1.5°) where correlated insulating states are absent, we observe a T-linear resistivity (order of 10Ω/K) over a wide range of carrier density and its slope decreases with increasing of n before reaching the van Hove singularity, in agreement with acoustic phonon scattering model. The slope of T-linear resistivity is non-monotonically dependent on displacement field, with a single peak structure closely connected to single-particle van Hove Singularity (vHS) in TDBG. For an optimal twist angle of ~ 1.23° in the presence of correlated states, the slope of T-linear resistivity is found maximum at the boundary of the correlated halo regime (order of 100Ω/K), resulting a ‘M’ shape displacement field dependence. The observation is beyond the phonon scattering model from single particle picture, and instead it suggests a strange metal behavior. We interpret the observation as a result of symmetry-breaking instability developed at quantum critical points where electron degeneracy changes. Our results demonstrate that TDBG is an ideal system to study the interplay between phonon and quantum criticality, and might help to map out the evolution of the order parameters for the ground states.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双双层石墨烯温度线性电阻率揭示声子和量子临界性
扭曲双双层石墨烯(TDBG)是一种电场可调谐的红外系统,具有电子相关态和相关温度线性电阻率(t -线性)。位移场为原位调整TDBG中电子相互作用的相对强度提供了一个新的旋钮,不仅产生了丰富的相图,而且能够单独研究每个相。本文研究了TDBG中载流子密度(n)、位移场(D)和扭转角(θ)与t -线性电阻率的关系。在大扭转角(θ > 1.5°)且不存在相关绝缘态的情况下,我们观察到在较大载流子密度范围内的t -线性电阻率(阶为10Ω/K),其斜率随n的增加而减小,直至达到van Hove奇点,这与声子散射模型一致。t线电阻率斜率与位移场呈非单调关系,单峰结构与TDBG中单粒子van Hove奇点(vHS)紧密相连。当相关态存在时,最佳扭转角为~ 1.23°时,t -线性电阻率斜率在相关晕区边界处最大(100Ω/K数量级),形成“M”形位移场依赖关系。这一观察结果超出了单粒子图像声子散射模型,而是表明了一种奇怪的金属行为。我们将这一观察解释为在电子简并改变的量子临界点处发生的对称破缺不稳定性的结果。我们的研究结果表明,TDBG是研究声子和量子临界相互作用的理想系统,并可能有助于绘制基态有序参数的演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A driven fractal network: Possible route to efficient thermoelectric application Double Electron Spin Resonance of Engineered Atomic Structures on a Surface Reconfigurable Training, Vortex Writing and Spin-Wave Fingerprinting in an Artificial Spin-Vortex Ice Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Observation of electrically tunable Feshbach resonances in twisted bilayer semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1