Dilini Wickrama Achchige, Dong Chen, G. Kokogiannakis, M. Fiorentini
{"title":"Probabilistic modelling of occupants’ thermostat preferences for residential building energy simulation and rating","authors":"Dilini Wickrama Achchige, Dong Chen, G. Kokogiannakis, M. Fiorentini","doi":"10.1080/19401493.2022.2147674","DOIUrl":null,"url":null,"abstract":"ABSTRACT Fixed thermostat setpoints and schedules are commonly used in residential building energy simulation and rating. While this approach is simple to implement, it does not represent occupants with varying preferences. In this study, based on field data from 102 households in three Australian cities, two alternative thermostat setting approaches were investigated. The first method (Probability Distribution Approach) uses all the values in a thermostat settings probability distribution generated from the field data. This was compared with a more straightforward method, where the thermostat settings were derived by applying weighted average thermostat settings. Both approaches were benchmarked against a series of simulations that used randomly generated thermostat settings with the same thermostat settings probability distributions. Results show that the Probability Distribution Approach matches better the benchmarking results (CV(RMSE) 1-8%) than the weighted average method (CV(RMSE) 9-37%), particularly for cooling demand.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"1 1","pages":"398 - 414"},"PeriodicalIF":2.2000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2022.2147674","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Fixed thermostat setpoints and schedules are commonly used in residential building energy simulation and rating. While this approach is simple to implement, it does not represent occupants with varying preferences. In this study, based on field data from 102 households in three Australian cities, two alternative thermostat setting approaches were investigated. The first method (Probability Distribution Approach) uses all the values in a thermostat settings probability distribution generated from the field data. This was compared with a more straightforward method, where the thermostat settings were derived by applying weighted average thermostat settings. Both approaches were benchmarked against a series of simulations that used randomly generated thermostat settings with the same thermostat settings probability distributions. Results show that the Probability Distribution Approach matches better the benchmarking results (CV(RMSE) 1-8%) than the weighted average method (CV(RMSE) 9-37%), particularly for cooling demand.
期刊介绍:
The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies
We welcome building performance simulation contributions that explore the following topics related to buildings and communities:
-Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics).
-Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems.
-Theoretical aspects related to occupants, weather data, and other boundary conditions.
-Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid.
-Uncertainty, sensitivity analysis, and calibration.
-Methods and algorithms for validating models and for verifying solution methods and tools.
-Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics.
-Techniques for educating and training tool users.
-Software development techniques and interoperability issues with direct applicability to building performance simulation.
-Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.