Origin of Europa and the Galilean Satellites

R. Canup, W. Ward
{"title":"Origin of Europa and the Galilean Satellites","authors":"R. Canup, W. Ward","doi":"10.2307/j.ctt1xp3wdw.9","DOIUrl":null,"url":null,"abstract":"Europa is believed to have formed near the very end of Jupiter's own accretion, within a circumplanetary disk of gas and solid particles. We review the formation of the Galilean satellites in the context of current constraints and understanding of giant planet formation, focusing on recent models of satellite growth within a circumjovian accretion disk produced during the final stages of gas inflow to Jupiter. In such a disk, the Galilean satellites would have accreted slowly, in more than 10^5 yr, and in a low pressure, low gas density environment. Gravitational interactions between the satellites and the gas disk lead to inward orbital migration and loss of satellites to Jupiter. Such effects tend to select for a maximum satellite mass and a common total satellite system mass compared to the planet's mass. One implication is that multiple satellite systems may have formed and been lost during the final stages of Jupiter's growth, with the Galilean satellites being the last generation that survived as gas inflow to Jupiter ended. We conclude by discussing open issues and implications for Europa's conditions of formation.","PeriodicalId":8453,"journal":{"name":"arXiv: Astrophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctt1xp3wdw.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Europa is believed to have formed near the very end of Jupiter's own accretion, within a circumplanetary disk of gas and solid particles. We review the formation of the Galilean satellites in the context of current constraints and understanding of giant planet formation, focusing on recent models of satellite growth within a circumjovian accretion disk produced during the final stages of gas inflow to Jupiter. In such a disk, the Galilean satellites would have accreted slowly, in more than 10^5 yr, and in a low pressure, low gas density environment. Gravitational interactions between the satellites and the gas disk lead to inward orbital migration and loss of satellites to Jupiter. Such effects tend to select for a maximum satellite mass and a common total satellite system mass compared to the planet's mass. One implication is that multiple satellite systems may have formed and been lost during the final stages of Jupiter's growth, with the Galilean satellites being the last generation that survived as gas inflow to Jupiter ended. We conclude by discussing open issues and implications for Europa's conditions of formation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
木卫二和伽利略卫星的起源
木卫二被认为是在木星自身吸积的最后阶段形成的,在一个由气体和固体粒子组成的环行星盘中。我们回顾了伽利略卫星在当前约束和对巨行星形成的理解的背景下的形成,重点关注最近的卫星在气体流入木星的最后阶段产生的环绕吸积盘中的生长模型。在这样一个圆盘中,伽利略卫星将在一个低压、低气体密度的环境中缓慢地吸积,时间超过10^5年。卫星和气体盘之间的引力相互作用导致轨道向内迁移和卫星向木星的损失。这种效应倾向于选择最大卫星质量和与行星质量相比的共同卫星系统总质量。一个暗示是,多个卫星系统可能在木星成长的最后阶段形成并消失,伽利略卫星是最后一代幸存下来的,因为木星的气体流入结束了。最后,我们讨论了关于木卫二形成条件的开放性问题和影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Constraints on the Nuclear EOS from Neutron Star Observables Analysis of extremely low signal-to-noise ratio data from INTEGRAL/PICsIT Origin of Europa and the Galilean Satellites Bulk viscosity of strange matter and r-modes in neutron stars Ultraviolet Spectra of Local Galaxies and their Link with the High‐z Population
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1